Precision Robot Calibration Using Kinematically Placed Inclinometers

Alec Robertson¹ Patrick Willoughby² Alexander Slocum²

¹ ABB Robotics, Västerås, Sweden ² MIT, Cambridge, USA

ASPE Annual Meeting, November 10–15, 2001

Project Overview

Functional requirement

- Calibrate the robot home position by leveling – align each axis to be perpendicular or parallel to gravity vector
- Project aims
 - Determine the accuracy of the existing robot leveling system
 - Design and construct a new leveling system with significantly improved accuracy
 - Provide a simple to use software automation tool to allow rapid and consistent calibrations

- Project phases
 - Prototype 1 ullet
 - mounting bracket
 - Prototype 2

 - software
 - Prototype 3
 - demonstration unit
 - Product lacksquare
 - product line

• Mount 2 sensors on an improved • Automate with PC based software

• Design and build a simple concept unit using kinematic couplings Automate with controller based

• Design and build accurate customer

• Integrate into the existing ABB

Existing System

- Current leveling process
 - Mount Wyler ZeroTronicTM inclinometers on sensor plates
 - Place mounting plates on robot structure
 - Place reference sensor plate on robot foot
 - Place leveling sensor plate on mounting plates on robot structure
 - Move (jog) robot manually until leveling sensor matches reference sensor
 - Update home position in controller

hand unit

- Problems
 - Poor process repeatability
 - Difficult to accurately place lacksquaremounting plates
 - manual jogging of robot

reference sensor

leveling sensor

Large user-dependent errors from

Design Requirements

- Analysis of existing system
 - **Recalibration errors**
 - At robot flange $\approx \pm 1.0$ mm
 - At 350mm tool $\approx \pm 1.5$ mm
 - Error breakdown

- Design goals
 - •
 - ulletcomponents
 - •
 - existing robot variants

Improve process repeatability No separate mounting plates or

High accuracy mounting unit

Compact and compatible with

Absolute measurement not relative

Software process automation

Recalibration error $\leq \pm 0.2$ mm

- Proof of concept
 - Mount sensors on single structure
 - Set reference levels on robot foot
 - Place on existing mounting plates on lacksquarewrist, lower arm, upper arm and flange

Prototype 1 unit

~ 0	Program Maiting for	r teitai	8±14	6 6
BI •	[4]<-Asis d [3]4-Asis]	Acis 2:>[1] Acis 4->[4]	8 8 -	1213
50	[5] (-AD15 5 [6] (-AD15 5	AC12 4-2141 AC12 5-2[4] _[]ear-2[5]	4 111	0 +
	101 «-Accept thosen aces: [L 2		0 <u>28)</u> IE	
-	Choose ages to be calibrated:		°	
P4 1 0	•		o P2	

Software automation

- Software automation
 - PC based software automation of lacksquarecontroller and sensors
 - ${\color{black}\bullet}$

Lower arm (axis 2)

Under body (axis 1)

Foot (reference)

Calculate and apply axis adjustments

IRB6400R-2.5m-150kg

Cube construction

- Mount magnets and tooling balls on separate steel plates
- Assemble plates into cube and mount sensors
- Use kinematic couplings for high accuracy placement on robot structure

Prototype 2

- Plate construction
 - •
 - Bolt onto existing mounting • locations in robot structure
 - Use hardened steel plates to •

Axis 2 mount

Machine separate grooved plates maximize magnet preload force and minimize long-term wear

Foot/Wrist mount

- Axis 1 mounting
 - Measure rotation of axes parallel to the gravity vector
 - Use dynamic kinematic coupling to ensure accurate measurement
 - Magnet preload holds unit in place and allows accurate re-alignment within coupling geometry during robot motion

- kinematic couplings
- Flange mounting
 - ullet
 - ${\color{black}\bullet}$ plates

Axis 1 mount

Dynamic kinematic coupling

Flange mount

Use standard, stationary groove

Axes 5 and 6 calibration highly sensitive to cube orientation

Press-fit groove plate into robot flange as an alternative to adaptor

• Test results

- Tested at BMW Germany on an IRB6400R-2.5m-150kg robot
- Average recalibration error = 0.4mm

- **Conceptual Design**
 - Mount sensors in a single-piece open cube structure
 - Magnet bolted to front and bottom surfaces of cube structure
 - Smaller grooves and thinner plates for reduced profile

Open cube structure and low profile groove plates

- **Final Design**
 - •
 - lacksquare
 - Full software automation
 - lacksquare

Solid cube structure requires only three precision machined surfaces Size: 40×40×60mm. Weight: 500g implemented in robot controller Recalibration accuracy = 0.2mm

Product Options

- Upgrade kit for existing robots
 - Bolt groove plates onto existing mounting locations
 - Machine grooves directly into flange

5

3

- Foot 1.
- Axis 1 2
- Wrist 3.
- Flange
- 5. Axis 2

- lacksquare
 - ulletheavy duty robot IRB7600
 - ulletstructure

Integrated product for new robots Standard calibration method for new Machine grooves directly into robot