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Abstract

A new family of compliant and self-locking tapered torsional couplings have been developed
as an alternate to spline-type couplings. The couplings use designed compliance to ensure
constant contact between mating beam-like teeth. The tip of one tooth is larger, but tapered, so
that when it mates at the base of the opposed tooth, it deflects radially. The taper is self-
locking to prevent radial deflection under torsional load. This eliminates backlash between
parts while maintaining a relatively high torsional stiffness. The large number of mating teeth
elastically average errors in the teeth.
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1.0 INTRODUCTION

There are many types of torsional couplings for blind mating including spline-type couplings such as
splines, oldham and spyders couplings[8]. In torsional spline-type couplings, backlash between projecting
elements leads to wear of the coupling and noise; eventually causing the spline to fail. The goal of this
project was to develop a new coupling that eliminated backlash while maintaining the simple assembly
associated with spline type couplings.

With respect to the design of zero backlash couplings, there are two schools of thought:  kinematic and
elastically averaged designs.  The former are well documented [1, 2], but unless complex flexures are
added [3], they cannot accommodate dynamic misalignment between components.  Elastically averaged
systems achieve repeatability or prevent backlash by having a continuum of points in contact, either by
flexing of a material (e.g., a flexural coupling such as a HelicalTM coupling) or preloading of many points
such that the error in any one subcomponent is averaged out by elastic deformation (e.g., a curvic coupling
or preloaded bearings in a universal joint) [4, 5].

The dilemma, however, is that flexural couplings require a means to clamp the coupling to a shaft,
preventing blind assembly. In addition, preloading a coupling’s elements to achieve elastic averaging
involves large forces or complexity that also precludes blind assembly. The new family of couplings
presented here combines blind assembly with elastic averaging and self-locking tapers to prevent slip
between coupling elements.
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2.0 SPLINE ALTERNATIVES

There are many alternatives to spline couplings for transmitting torsional loads while providing modest
shaft misalignment capability. Elastomeric and flexural couplings [6,7] have greater compliance between
the driving shaft and the driven shaft, as well as more parallel misalignment. The soft materials reduce
noise and fatigue, but they preclude accurate rotational motion. Elastomeric couplings are generally
divided into compressive and shear couplings, depending on the interaction mode of the driving and driven
shafts. In a compressive coupling, parts of the driving shaft push on parts of the driven shaft. Elastomeric
material is placed between the interacting faces and absorbs some of the torsional energy through
compression. In a shear coupling, both the driving and driven shafts are connected only to the elastomeric
material, placing the elastomer in shear during torque transmission. Elastomers are both stiffer and
stronger in compression than shear, so compressive couplings are typically torsionally stiffer and can carry
a higher torque load than can shear couplings. Thus, compressive couplings are a better choice in
applications requiring some positioning accuracy or high torque loads, while shear couplings are well
suited to damping out torsional vibrations. Shear couplings are also superior in applications with high
angular or axial misalignment.

Hybrid couplings combine features of metallic and elastomeric couplings. Commonly, they have a higher
torsional stiffness, like a metallic coupling, but allow considerable angular and axial misalignment, as
would an elastomeric coupling. Couplings with this type of “hybrid” behavior are sometimes made of
composite materials that perform better in harsh chemical environments than would elastomers. However,
there is still the problem of how to achieve blind assembly.

3.0 CONCEPT DEVELOPMENT

3.1. Early Concepts

Numerous concepts for a backlash-free blind-mating coupling were evaluated before the concept discussed
in detail here was selected. Six were selected as the most promising as shown in Figure 1 a-f. Table 1
summarizes the dominant physics, risks, and benefits of each concept. The first was a kinematic coupling
between shafts (Fig. 1a); this would guarantee constant contact between the shafts, preventing backlash,
and would also allow simple blind assembly. However, it would not accommodate misalignment. A
contrasting option was a torque finger connection (Fig. 1b); many elastic fingers on the end of each shaft
mesh together to transmit torque. This concept uses elastic averaging to average out errors in the fingers’
geometry. This ensures that for modest misalignments or manufacturing errors, mating fingers are always
in contact, preventing backlash. Torque fingers would allow looser manufacturing tolerances and easy
assembly, but the torque capacity might not be as high as with other alternatives. 

Two concepts involving compliance were also considered. The first was a compliant spline (Fig. 1c). Leaf
spring-like features would be incorporated into the shape of the spline keys (not shown) or keyways
(shown) and would be preloaded when the keys were inserted into the key ways. This preload guarantees
constant contact, eliminating backlash. This concept would allow one-step assembly, but the leaf spring
features would make the coupling more complex to manufacture than a simple spline. 

 Another alternative used elastomeric inserts (Fig 1d) in a spline connection similar to the current one. Like
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the elastomeric couplings discussed above, these inserts would not eliminate backlash, but they would
absorb energy and eliminate rattle. The insert could be a resin injected in the form of a liquid under
pressure and allowed to cure. However, such inserts could add considerable complexity to the assembly
process and for rework should the coupling require disassembly.

A further idea (Fig 1e) also altered the basic spline concept to ensure constant contact, splitting each spline
key into two wedges that can slide against each other. As they slide, the effective width of the key changes.
Adding an appropriate preload will maintain a key width sufficient for constant contact.

The last alternative concept considered was a friction coupling (Fig 1f). Two shafts would have mating
conically shaped ends with an elastomer bonded to their surfaces. An axial bolt would be tightened to
create the desired normal force between the two faces, with frictional force being proportional to the
normal force. This concept eliminates backlash, but does require the extra assembly step of bolt tightening.
Such a design would have little allowance for misalignment. 

Figure 1g evolved by combining the positive features of the other couplings along with the concept of
elastic averaging and self-locking tapers; and it is the basis of the new coupling concept.

3.2. New Coupling Concept

The new coupling uses the principle of matched compliance between radially tapered beams and consists
of two pieces, either symmetrical or asymmetrical, engaging through fingers which behave as cantilever

Table 1: Characteristics of various coupling alternatives

Concept Physics of Operation Major benefits Risks/Drawbacks

Kinematic 
Coupling

6 point contact
(Figure 1a)

Drop-in assembly Cannot accommodate 
mis-alignment

Torque 
Fingers

Elastic averaging of many 
meshing fingers
(Figure 1b)

Loose manufacturing 
tolerances
Easy assembly

Low Torque capacity

Compliant 
spline

Compliance built into spline 
keys or keyways
(Figure 1c)

Reduce backlash
Simple Assembly

Manufacturing 
complexity

Elastomeric 
Inserts

Insert/Inject elastomer between 
spline keys & keyways
(Figure 1d)

Evolutionary idea
High damping

Messy, complex 
reassembly process

Wedge spline Sliding wedges expand key to 
fill keyway
(Figure 1e)

Zero backlash
High stiffness

Complex parts
Adjustment required

Friction 
coupling

Conical friction surfaces
Axial force supplied by bolt
(Figure 1f)

High damping Wear
Angular misalignment 
capability
Low Torque Capacity

Self adjusting 
compliant 
couplings

Fingers which deflect to 
accommodate manufacturing 
variations
(Figure 1g)

Drop in assembly
No backlash
High Stiffness
Good damping

Modest misalignment 
capability
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beams. The ends of the fingers from one piece engage the roots of the fingers from the other, and vice
versa. The effect is to have two sets of rigid-compliant engagement beams. This rigid-compliant
engagement provides a tight, preloaded coupling between parts that are relatively insensitive to
manufacturing variations. Unlike tapered tooth couplings, the transmission of torque does not result in a
net axial force. While the overall coupling may be short relative to its diameter, each beam will have a
slender aspect ratio, such that one end is compliant, whereas the other is relatively rigid.

We define the working direction as the direction in which net force is transmitted by the teeth. It is the
direction of instantaneous velocity for any given particle in the coupling, and lies in a plane normal to the
axis of the coupling.

We define the adjustment direction as the direction in which the elements of the coupling flex to
accommodate manufacturing variation. In Figure 2, the working direction and adjustment direction are
indicated for an example location on the coupling cross section, when the torque is applied along the z
direction. In one concept variant, the adjustment direction is parallel to the working direction (Figure 3,5).
In other implementations, it is perpendicular to the working direction (Figure 4). 

3.3. Concept Variant: Circumferential Adjustment Compliance

The simplest embodiment provides circumferential compliance between the teeth to adjust for coupling
tooth errors. Examples of this can be seen in Figures 3 and 5.

In this concept, the stiffness of the coupling for small deflections is reduced. The same mechanism which
permits the coupling to adjust permits the fingers to deflect under load. For larger deflections, the
adjustment mechanism may "bottom out’’, leading to solid contact. For large torques, this effect may be felt
as backlash. It should be noted that the adjustment compliances for all varieties of coupling in the family
are in parallel with each other, with respect to torsional stiffness. That each coupling has many fingers
lessens the consequences of the adjustment and working directions being parallel.

3.4. Concept Variant: Radial Adjustment Compliance

In this concept, the working surfaces of the coupling are radially tapered by an angle α. During installation,
variations in the width of the fingers in the working direction are accommodated by the finger flexing in
the radial direction.  The angle formed couples the width of the finger to its radial distance from the central
axis. This permits looser manufacturing tolerances - if the fit is tighter than expected, one finger deflects
inward and the other finger outward. The angle ensures good contact between the pieces. Generous
chamfers at the ends of the fingers make alignment easier, and reduce the starting force for assembly. A
simple example of this idea can be seen in Figure 4. In order to keep the pre-load forces to a small value,
we need to have lesser stiffness along the adjustment direction. However, care should be taken not to
reduce the tangential stiffness so that the coupling does not twist too much under torque loads. If we have a
large diameter as well has a hollow inside, we can achieve high tangential stiffness as well as low radial
stiffness. Note that for a torsional coupling, the perpendicular adjustment direction is equivalent to the
radial direction. 

If the angle is small enough relative to the coefficient of static friction [Equation 21], it can be shown that
the device becomes self-locking, which is a key feature of this concept. Force is transmitted in the working
direction without any deflection in the adjustment direction. This increases the torsional stiffness of the
coupling.

3.5. Concept Embodiment: Moment Carrying

If the overall coupling is long relative to its diameter, it will be able to support bending moments. In order
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to achieve matched compliance, each finger should have an aspect ratio of approximately 10 to 1, thus for
a small number of fingers, the overall coupling aspect ratio is on the order of 3 or 4 to 1. Four-finger
moment-carrying couplings are shown in Figures 3-5.

3.6. Concept Embodiment: Non-Moment Carrying

This embodiment (Figures 6,7) is intended for applications in which length is short, and moments need not
(or should not) be resisted. Once the engagement length of the coupling is determined, the fingers can be
sized to have the required stiffness profile. This yields the required width of each finger, and a fully
populated coupling then contains as many fingers as fit around its circumference.

3.7. Design Issues

We have used the terms "relatively stiff’’ and "relatively compliant’’ to mean that the beam, or finger,
should be much more compliant at the end than at the root, perhaps one order of magnitude more
compliant. From beam theory, the stiffness of a cantilever beam k is related to the distance x from the free

end as . As we go twice the distance towards the free end from a particular point, the stiffness
nearly drops by an order of magnitude. We thus obtain a design equation for the length of the fingers based
on the relative stiffness desired. In addition, rigid couplings will have damping at each mechanical contact.
In our proposed coupling concept (Figure 6,7), damping is introduced by friction in the joints of several
mating finger pairs. Quantifying the effect of damping due to several mating fingers in our coupling is a
topic for further investigation. 

Current belief holds that two-point contact between each pair of beams is essential to the success of the
coupling. Each beam should contact the mating part only near the free end and near the root. (Two-zone
rather than two-point contact would be a more accurate term in the 3D case.) Contact in the middle of the
beam does not provide the desired matched compliance and has no moment carrying capacity. 

The radius of contact (from the axis of rotation) in the coupling is important, since contact forces decrease
with increasing radius of contact. Although part radius is a function of the torque to be transmitted and the
materials available, steps can be taken to ensure that for a given part radius, the radius of contact is
maximized.

4.0 SKETCH MODELS

Three wood models of coupling concepts were constructed to form physical “sketch models” that could be
handled as a means to quickly physically evaluate concepts. If the coupling concept was robust, it should
be able to accommodate the errors associated with novice woodworking. The first was of the basic
matched-compliance concept, as seen in Figure 3. The second and third addressed compliance to allow for
manufacturing errors. In the second, shown in Figure 5, adjustment is parallel to the working direction, and
consists of a new male component for the old female component. The third uses beveled fingers which
adjust normally to the working direction, requiring both a new male and female component. This model is
shown in Figure 4.

All of the models are of glued-assembly construction to minimize the complexity of machining required.
Segments of 25 mm (1" nominal) square stock (30 cm long for the fingers, and 10 cm long for core
support) were finished and glued together in a grid to form the male and female components. Precision was
achieved by using the same machine settings wherever possible; thus, the square stock pieces may not have
been exactly 25 mm square, but they were square, and all the same. This symmetry greatly simplified the

k 1 x
3⁄( )∝
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tolerancing and measurement requirements. Due to quirks of the fabrication of the models, each model had
a preferred assembly orientation.

The radial adjustment compliance model was given a generous chamfer to ease assembly. Without the
chamfer the coupling halves required a great deal of force to assemble. With the chamfer, it assembled
quite easily, even in the three non-preferred orientations. The effect of the chamfer on ease of assembly
cannot be overstated; the tolerance for variation in a chamfered, perpendicular adjusting wooden model
with non-trivial variations demonstrates the robustness of the matched-compliance principle.

All three models demonstrated excellent empirical torsional stiffness, as tested by twisting by hand. The
parallel versions exhibited some minor creaking, suggesting flexing on a very small scale. The radial
adjustment compliance, especially when assembled in a non-preferred direction, felt exceptionally stiff.

Physical models of the non-moment carrying versions of the coupling were produced by 3D printing.
Circumferential and radial adjustment compliance proof-of-concept models are shown in Figure 6 and
Figure 7, respectively. As expected, these models exhibited good torsional stiffness but were unable to
resist large off-axis moment loads; thus demonstrating their coupling capability.

5.0 ANALYTICAL MODELS

A first-order analytical model was created to determine the torsional stiffness of a finger pair. The analysis
is extended to determine the torsional stiffness of the couplings with parallel and perpendicular adjustment.
Following this, a first-order model was created to determine the bending moment stiffness of the finger
pair. The analysis is extended to determine the bending moment stiffness of the couplings with parallel and
perpendicular adjustment.

5.1. Torsional stiffness

5.1.1. Stiffness of a finger pair

Consider a cantilever with the following dimension: length l, width b and height h. The stiffness of the
cantilever at any section can be determined from the first-order analysis of a cantilever subjected to a
concentrated load. 

Therefore the spring constant at any section of the cantilever can be written as 

(1)

Figure 8 shows the modeling of a pair of contacting fingers as rigid surfaces connected by compliant
springs. The springs correspond to the compliance of the finger at the respective location. The spring
constant at the base of the cantilever will be an order of magnitude higher than that at the tip. Therefore,
the two springs can be replaced by a single spring with a spring constant corresponding to the stiffness of
the free end of the cantilever.

The torsional constant of a finger pair can be found by representing the displacement δ at position x in
terms of the radius of the coupling and the angular deflection; therefore,

(2)

Kx
3EI

x
3

---------=

δ rδθ=
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the torsional spring constant is given by

(3)

where  is the mean radius of the coupling. Since there are 2 springs in parallel in a finger-pair

(4)

5.1.2. Torsional Stiffness of Circumferential Adjustment Compliance Couplings

Given mean radius of coupling rmean, thickness of coupling δr, number of fingers on each coupling half n,
width of a finger w, and gap to width ratio gwratio,

we can relate the radius, width, and number of fingers (Figure 9) as

(5)

The effective width of the finger taking the gap width ratio is given by

(6)

Therefore

(7)

(8)

Since the stiffnesses of the finger pairs are in parallel, the torsional constant of the entire coupling is
obtained by adding the stiffnesses of its finger pairs. Therefore

(9)

(10)

From this, we observe that for a given , Ktotal increases linearly with respect to n, and for a given n, Ktotal

decreases with the cube of  as shown in Figure 10.

5.1.3. Torsional Stiffness of Radial Adjustment Compliance Couplings

In this coupling, the entire width of the finger contributes to the torsional stiffness. Therefore the stiffness
can be obtained from the previous analysis by setting weffective = w.

Kt Kxrmean
2

=

rmean

Kt fingerpair, 2Kt=

w
2πrmean

2n
---------------------=

weffective

w 1 gwratio–( )
2

------------------------------------=

I
∆r w 1 gwratio–( )( )3

96
--------------------------------------------------=

Kt fingerpair,
2 3( )E∆r w 1 gwratio–( )( )3

rm
2

96L
3

------------------------------------------------------------------------=

Kt total, nKt fingerpair,=

Kt total,
nE∆r w 1 gwratio–( )( )3

rm
2

16L
3

----------------------------------------------------------------=

l
w
----

l
w
----
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From this, we again observe that for a given , Ktotal increases linearly with respect to n, and for a given n,

Ktotal decreases cubically with  as shown in Figure 11.

5.2. Bending moment stiffness

For a cantilever subjected to a moment, M; The mean angular deflection at the free end is given by 

(11)

where l is the length of the cantilever, E is the modulus of elasticity, and I is the moment of inertia of the
beam cross-section. Therefore

(12)

Since there are two fingers in a finger pair,

(13)

A finger can be subjected to bending in two directions, namely the radial direction, er and the tangential
direction, eθ. The bending stiffness in a  direction can be obtained by using the appropriate area moment.
Therefore, use Iθ for bending along the eθ and Ir for bending along er.

5.2.1. Bending Stiffness of couplings

The bending stiffness of the coupling is determined by summing the contribution of its individual fingers.
The amount of contribution is determined by 

• Geometrical constraint on the finger

• Location of the finger pair with respect to the moment axis

Cosine effect: The bending of the fingers along eθ can resist moments along er direction. Therefore the

contribution of the finger depends on the projection of er along the external moment axis vector, . The

magnitude of the projection is given by . If θ represents the spatial location of the finger-pair with

respect to the , then the magnitude of the projection reduces to |cos(θ)|.

Sine effect: Similarly, the bending of the fingers along er can resist moments along eθ direction. Therefore

the contribution of the finger depends on the projection of eθ along the external moment axis vector, . The

magnitude of the projection is given by . If θ represents the spatial location of the finger-pair with

respect to the , then the magnitude of the projection reduces to |sin(θ)|.

5.2.2. Bending Stiffness of Circumferential Adjustment Compliance Couplings

Given rmean, mean radius of coupling, δr, thickness of coupling, n, number of fingers on each coupling half,

l
w
----

l
w
----

θmean
Ml
2EI
---------=

Kb
2EI

l
---------=

Kb fingerpair,
4EI

l
---------=

î

er î•

i

î

eθ î•

i
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w, width of a finger, and gwratio, gap to width ratio, we can relate the radius, width and the number of
fingers as

(14)

The effective width of the finger taking the gap width ratio is given by

(15)

Therefore, the moduli governing the stiffness of a finger bending in the radial and tangential directional
directions of the coupling are respectively: 

(16)

(17)

From the geometry of the fingers, there is no locking between the fingers to prevent the slip along er.
Therefore, only the cosine effect is present when determining the contribution of the individual finger-pairs
to the entire coupling. 

(18)

For a given , the variation of K{t, bending} with n and for a given n, the variation of K{t, bending} with respect

to  are shown in Figure 12.

The first order mathematical model was analyzed to determine the effect of the number of fingers on the
bending stiffness of the coupling. On plotting Kt, bending versus the number of fingers, a kink was observed.
We were able to explain the kinks mathematically from the equations. For the case when there were three
fingers, the angle between the fingers is 120o. The sum of 1+|cos(120o)| + |cos(2*120o)| is 2. While this

sum for the 4 finger case, 1 + |cos(90o)| + |cos(180o)| + |cos(270o)| is also 2. As a result, in Figure 12 we
observe a kink in the graph at n=4. 

5.2.3. Bending Stiffness of Radial Adjustment Compliance Couplings

Here, the entire width of the finger contributes to the bending stiffness. The area moment can be computed
using the formula given in the parallel case by setting weffective = w. Since the geometry of the fingers
ensures that locking occurs, a finger-pair can resist moments along both er and eθ. Therefore, both sine and
cosine effect is present when evaluating the contribution of the individual finger pairs to the overall

w
2πrmean

2n
---------------------=

weffective

w 1 gwratio–( )
2

------------------------------------=

Ir

∆r w 1 gwratio–( )( )3

96
--------------------------------------------------=

Iθ
∆r

3
w 1 gwratio–( )

12
---------------------------------------------=

Kt bending,
4EIr

l
----------- 1 θ( )cos 2θ( )cos … n 1–( )θ( )cos+ + + +( )=

w
l
----

w
l
----



10

coupling:

For a given , the variation of K{t, bending} with n and for a given n, the variation of K{t, bending} with respect

to  are shown in Figure 13 where kinks occur as explained in the previous section.

6.0 SELF LOCKING AND FINGER GEOMETRY

This section describes the mechanics of frictional interlocking between the coupling fingers. The idea is
extended to determine the angle of the sloping faces of the finger required for self-locking. During our
experimental phase, our first design displayed relative slip between the fingers of the male and the female
elements. As explained in Section 3.4, relative slip between fingers is detrimental to the torsional stiffness
of the coupling. The design was analyzed and the reason for the slip was identified and corrected in the
next design.

6.1. The Self Locking Effect

Figure 14 shows a block lying on a flat surface which is being acted upon by an external force F at an angle
β with the surface. If µs is the coefficient of static friction between the block and the surface, then,
neglecting gravity, the block will remain stationary as long as the following conditions are valid.

(19)

(20)

Therefore, a simple condition for self locking is 

(21)

6.2. Side Face Inclination of the Finger

Given the tangential force at the mean radius of the coupling is the external force acting on the inclined
surface, as shown in Figure 14, let φ be the angle made by the side face of the fingers with the radial line.
Using the self-locking result of Equation 21, we can determine an inequality relating φ and µs.

(22)

Therefore

(23)

(24)

Kt bending,
4EIr

l
----------- 1 θ( )cos 2θ( )cos … n 1–( )θ( )cos+ + + +( )=

4EIθ
l

------------ 1 θ( )sin 2θ( )sin … n 1–( )θ( )sin+ + + +( )+

l
w
----

l
w
----

N F β( )sin=

µsN F β( )cos>

β( )tan µs 1>

φ π
2
--- β–=

π
2
--- φ– 

 tan µs 1>

µs φ( )tan>
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For a given µs, the maximum value of the inclination angle is given by

(25)

7.0 FINITE ELEMENT MODELS

Finite element models were created and evaluated using ProENGINEER  and ProMECHANICA .
Torsional loads were applied as point loads. Note that ProMECHANICA  automatically distributes a
point load over a small circular area; this area is small relative to the size of the components, and does not
significantly change our results.

Initial models were done on single fingers or finger pairs to save computation time. After these models
demonstrated the feasibility of the idea, models of entire couplings were constructed and analyzed. Sample
results are shows in Figures 15 and 16. Figure 15 is a plot of displacement magnitude in an aluminum
model of the perpendicular adjustment moment carrying variation; displacement is expressed in units of
milli-inches. Figure 16 shows strain energy for the 3D printed perpendicular adjustment non-moment
carrying variation. These figures show good strain and stress distribution indicating a robust design.

8.0 TESTING AND RESULTS

Physical models were tested to validate analytical and finite element models of torsional stiffness. Figure
17 shows a test fixture that was constructed to permit the testing of 3D-printed couplings, as well as an
aluminum model fabricated specifically for the tests.

Except where noted, all structural components were aluminum, and all fasteners and bearings were steel.
The base of the test fixture was a 25mm (1" nominal) thick plate, resting on four feet. To this plate were
bolted two bearing blocks and a coupling mounting block. The bearing blocks were mounted
approximately 13 cm (5") apart, and supported a shaft with 25.4 mm (1") bore ball bearings. Into one end
of a shaft was threaded a 1/2-20 steel hex-head bolt for torque application. The other end of the shaft
featured a rectangular tongue, which meshed with a slot on the end of the coupling to be tested. 

The tongue-slot design is analogous to half of an Oldham coupling.This arrangement allowed for torque to
be applied to the test artifact with a simple socket-type torque-wrench, while isolating the artifact from
forces other than arising out of pure torsion.

Deflection was measured by radially attaching a 6.35 mm threaded rod into each artifact. A dial indicator
was used to measure deflection of the rod at a given distance (correcting for cosine error) as torque was
applied with the wrench. The torsional stiffness of any components between the rod and the wrench were
irrelevant, as torque is constant through the fixture.

The results of the testing are shown in Figures 18 and 19. In each case, deflection varies linearly with
torque, as expected. The aluminum model (moment carrying) proved to be stiffer than the simple first
order theory predicted. The torsional stiffness of the aluminum coupling is 1.5 N-m/milli-radian. 

 

φ µs( )1–
tan<
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To compare it with a conventional spline coupling, we performed FEA analysis on a conventional spline
coupling made of Al 6061, assuming single-tooth contact over a length of 50mm. The stiffness in this case
was found to be 5.0 N-m/milli-radian. We have assumed line contact for the FEA analysis, but in reality,
the spline teeth are likely to have point contact only and the stiffness value for the spline coupling would be
lower. Thus, we observe that the proposed coupling has torsional stiffness comparable to conventional
spline couplings with nearly same dimensions.

The 3D printed parts (non-moment carrying), on the other hand, proved more compliant than predicted.
Here, several factors come into play. First, the parts are not solid, but composed of layers of a deposited
polymer. In the parallel coupling, the core of each finger is of lower density. The anisotropic character of
the 3-D printed parts explains some of the discrepancy. Further, the modulus of elasticity of the polymer
and the coefficient of friction were not known precisely, leading to further disagreement between theory
and experiment. Still, the general agreement indicates that an analytical model can be an aid in the design
of this type of coupling. Experimental values are compared with analytical and finite element values in
Table 2.

The first 3D printed perpendicular-type coupling exhibited relative slip between the fingers, indicating that
self-locking was not occurring.  Figure 19(b) shows the results for a 3D printed coupling re-designed to
ensure self-locking. The new coupling was 1.25 times the diameter of the old coupling. Since torsional
stiffness is proportional to the stiffness of the finger times the radius squared, the size of the new coupling
alone should approximately double the stiffness. Recall the proportional relationship between the number
of fingers and the stiffness shown in Figure 11. The smaller coupling has 9 teeth, whereas the larger
coupling has 15 teeth. Thus, the increase in stiffness due to the number of teeth is approximately 1.7. The
expected net stiffness ratio between the larger and smaller coupling is then 3.3. Comparison of the
deflections from Figure 19(a) and Figure 19(b) shows approximately 4 times the stiffness, with the
additional increase probably due to the self-locking effects.

9.0 CONCLUSIONS

This new family of couplings, inspired by backlash in spline-type couplings, uses the principle of
interlocking fingers with designed compliance and self-locking taper angles to ensure constant contact of
mating parts and thus eliminate backlash. The couplings are self-adjusting upon assembly; adjustment may
be either circumferential or radial. Given a relatively constant aspect ratio of tooth length to width, the
number of teeth will determine whether or not the coupling can carry off-axis moment loads. The self-
locking phenomenon has been shown to contribute to torsional stiffness.

Table 2: Torsional deformation values for 3D printed coupling models

Coupling type
Moment carrying radial 
adjustment compliance 

model

Non-moment carrying 
circumferential adjustment 

compliance model

Applied torque 20 Nm 7 Nm

Experimental deflection value 21.6 milli-radians 19.6 milli-radians

FEA deflection value 14.5 milli-radians 13.6 milli-radians

Analytical deflection value 16.4 milli-radians 16.2 milli-radians
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Analytical models of the coupling designs agreed with experimental results for stiffness to within 20
percent. Our finite element models were within 15 percent of measured values. Thus, the models and
design metrics are useful for designing the couplings.

Further work is planned within this family of couplings. We will pursue a more accurate bending model
and also plan to investigate the possibility of a radial version of this new type of coupling. The concept of
the radial version of this coupling is as shown in Figure 20. In addition it may be possible to create these
types of features on silicon wafer, so that the accuracy in assembly of MEMS devices can be increased.
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12.0 APPENDIX - NOMENCLATURE

µs Coefficient of static friction

β Angle made by applied force with the horizontal
δ Deflection of the beam along the circumference
δθ Torsional deflection of the beam
∆r Thickness of the coupling
ϕ Angle of inclination of a surface
θmean Mean angular deflection of the free end of the beam
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θ Angular displacement variable
b Width of a cantilever beam
er Unit vector in the radial direction

eθ Unit vector in the tangential direction

gwratio Gap to width ratio in our coupling

h Height of a cantilever beam
k Stiffness of a beam
l Length of a cantilever beam
n Number of finger pairs
r Radial distance from the axis
rmean,rm Mean radius of the coupling
w Width of a finger of the coupling
weffective Effective width of a finger based on gap-width ratio

x Distance variable along an axis
E Modulus of elasticity
F Force
I Moment of inertia of a beam about the neutral axis
Iθ Moment of inertia of a finger about the neutral axis along the tangential direction

Ir Moment of inertia of a finger about the neutral axis along the radial direction
Kb Bending stiffness

Kt Torsional stiffness

Kt-fingerpair Torsional stiffness for a pair of fingers in contact
Kt-total ,Ktotal Torsional stiffness for the entire coupling

Kt-bending Total bending stiffness of the entire coupling
Kx Stiffness constant as a function of distance x along the beam 

L Length of a finger in the coupling
M Moment
N Normal force of reaction



15

(f) Friction coupling (g) Self adjusting compliant splines

(e) Wedge splines(d) Elastomeric spline inserts(c) Compliant splines

(b) Torque Fingers(a) Kinematic coupling

Figure 1: Conceptual hardware verification

inserts

Friction
pad
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Adjustment direction

Working direction

y

x
z

Figure 2: Working direction denotes the direction along which the contact forces contribute to 
the torque. Adjustment direction is the direction in which the fingers adjust during contact.

Applied torque direction

Compliance Slits

Figure 3: Wood concept model of coupling with mixed adjustment compliance

Adjustment direction

Working direction

(a) Female component (b) Male component

Figure 4: Wood concept model of coupling with radial adjustment compliance

Compliance Slits

Working direction Adjustment direction
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(b) Male component(a) Female component

Figure 5: Wood concept model of coupling with circumferential adjustment 
compliance and with contact faces being independent

Compliance Slits

Figure 6: Non-moment carrying coupling with circumferential adjustment compliance

(a) 3-D model of the assembled coupling (b) 3-D printed part

Figure 7: Non-moment carrying coupling with radial adjustment compliance

(b) 3-D printed part(a) 3-D model of the assembled coupling
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P

Figure 8: Finger compliance models
δ

k_bk_s

k_s k_b

rinside

rmean

routside

δr

θ ∼ rmean θ

gap

gwratio
gap

rmeanθ
-----------------=

Figure 9: Coupling analysis parameters
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Figure 10: Torsional stiffness variation for circumferential adjustment compliance couplings
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Figure 11: Torsional stiffness variation for radial adjustment compliance couplings
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Figure 12: Bending stiffness variation for circumferential adjustment compliance coupling
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Figure 13: Bending stiffness variation for radial adjustment compliance couplings
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β

Figure 14: Self-locking taper effect

Ftangent

Ftangent

Ffriction Fcontact

Contact between two
fingers

φ

Figure 15: Finite element analysis of moment-carrying coupling made of Aluminum
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Figure 16: Finite element analysis of moment-carrying coupling made of 3D printing
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Figure 17: Experimental setup for measuring torsional stiffness

(a) Test Fixture loaded with the aluminum coupling (b) Aluminum coupling machined

(c) Parallel adjustment 3-D printed coupling (d) Perpendicular adjustment 3-D printed coupling

adapters

with adapters for the test setup with adapters for the test setup

from bar-stock
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Figure 18: Experimental torsional stiffness for radial adjustment Aluminum coupling concept
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Figure 19: Experimental torque deflection for 3D printed coupling

(a) Parallel adjustment 3D printed coupling

(b) Perpendicular adjustment 3D printed coupling
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Figure 20: Radial Coupling concept with self-locking axially tapered adjustment compliance

(a) Female component (b) Male component


