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Kinematic couplings are statically determinant structures that are often used in
precision fixturing applications because of thewr high repeatability. The simplicity
of their design alsa makes the design of accurate interchangeable couplings a
realistic task. This paper discusses three-groove kinematic coupling design
methodologies and then describes the theory required to calculate stresses at the
contact interfaces and error motions at any point on the coupling. The theory
presented is incorporated into a kinematic coupling design spreadsheet (written

in Mierosoft Excel) that can run on a personal computer.
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introduction

Kinematic couplings have iong been known to provide
an economical and dependable method for attaining
high repeatability in fixtures.” Properly designed
kinematic couplings are deterministic: They only make
contact at a number of points equal to the number of
degrees of freedom that are to be restrained. Being
deterministic makes performance predictable and also
helps to reduce design and manufacturing costs.?2 On
the other hand, contact stresses in kinematic couplings
are often very high, and no elastohydrodynamic lubrica-
tion layer exists between the elements that are in
point contact: thus for high cycle applications, it is
advantageous to have the contact surfaces made from
corrosion-resistant materials (e.g., ceramics). When
nonstainiess steel components are used, one must be
wary of fretting at the contact interfaces so steel
coupliings should only be used for low cycle
applications.

Tests on a heavily lcaded (80% of allowable
contact stress) steel ball/steel groove system have
shown that 0.1 um repeatability can be attained3;
however, with every cycle of use, the repeatability
waorsened until an overall repeatability on the order of
10 um was reached after several hundred cycles. At
this point, fret marks were observed at the contact
points. Tests on a heavily loaded (80% of allowable
contact stress) silicon nitride/steel groove system
have shown that 50 nm repeatability could be attained
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over a range of a few dozen cycles, and that with
continued use the overall repeatability asymptoticaliy
approached the surface finish of the grooves (on the
order of 1/3 um R,). An examination of the contact
points showed an effect akin to burnishing, but once
the coupiing had worn in, 0.1 um repeatability was
uitimateiy obtained. Unfortunately, references were
not found in the literature that make an extensive
comparison of the effects of load and surface finish
on kinematic coupling repeatability.

The tests that were reported also showed that with
the use of polished corrosion resistant (preferably
ceramic ) surfaces, a heavily loaded kinematic coupling
can easily achieve 0.1 um and better repeatability with
little or no wear-in required. Regretfully, too many
designers still consider kinematic couplings tc be
useful only for instrument or metrology applications.
Therefore, this paper is presented to describe in detaii
the analysis tools needed to design kinematic couplings
for any application. The analysis tools presented
are also impiemented on a spreadsheet (written in
Microsoft Excel}.”

Coupling configuration and stability

Symmetry aids in reducing manufacturing costs. and
for practical fixturing applications in general, the use
of grooves for all contact regions minimizes the overall
stress state in the coupling. Thus, it is assumed here
that the kinematic coupling to be designed is a
three-groove type.

Two forms of three-groove couplings are illustrated
in Figure 7. Planar couplings are often found in

* The spreadsheet s being distributed by the American Society for
Precision Engineering, Box 7918, Raleigh. NC 27695-7918. USA
(919-737-3086).

67



Sigeum. Thrae-groave Rinemanc couvohngs

z

Fmnas

Figure 1 Examples of three-groove kinematic coup-
lings for honzontal and vertical fixtunng apphications.
The coupling components to which the balis are
permanently afthixed are not shown for clanty

metrology applicanons. They can also be used in the
manufaciure of precision parts. For exampile. a planar
coupling can be used to hold a gnnding fixture on a
profile grinder. 4 matching three-grogve plate on a
coofdinate measunng machine allows the grnding
fixture 10 be transferred (o the coondinate measuring
miachine with the part. The par can be measdred and
then placed back onto the gnnder so the errors
can be corrected. To mimmize Abbe erors h S0ime
applicatons. vertcally onented couplings can be
designed wherse the preload 1s obtained with a clamping
mechanism or by grawity acting on @ mass held by a
cantlevered arm, An exampie would be a three-groove
hinematie couplding used o hold photolithograpiic
masks in 3 wafer stepper whosa projection axis must
be horizontal because of its size.

With three grooves, the question naturally anses
as to what is the best onentation for the grooves
tathematicaily, to guarantee that the coupling wiil be
stable. James Clerk Maxwell stated the following*:

Whan an instrument is intended to stand N a
definite positron on a fixed base it must have six
heanngs, so arranged that if one of the beanngs

werg removed the direction in which the cor-
responding pomnt of the instrument that would be
left free to mowve by the ather bearings must be as
nearly as possible normal fo the tangent plana at
the beanng.

[ Thes condition impiies that. of the normals to the
tangent planas at the bearings, no two coincide; no
thres gre in one plane, and eithar meat in a point or
are parallel, no four are in one plane, or meat in a
paint, or are parallel. or, more generally, belong to
the same system of generators of an hyperboloid of
one sheet. The conditions far five normais and for
six are more complicated )

In a footnote to this discussion, Maxwell references
Sir Aobart Ball's pioneefing work N screw Hheary
Screw theory asserts that the motion of any system
can be represented by 8 combination of a fimite number
of screws of varving pitch that are connected n a
particular manner. This concepot 15 wall llustrated for
a plethora of mechanisms by Phillips.® Ball's work on
screws spanned the later half of the 19th century, and
a datailed summarx of Fis wark on screw theory was
published in 1900.% Ball's treatise describes the theory
of screws n elegant, ye! easily comprehensible,
linguistie and mathematical terms, Currently, research
in automation i$ atempling 10 use screw theory 10
demgrminge what 15 the best way to grasp an object
[@.g., with a robotic hand} or to fixture a pan
[e.g.. for sutomated fictura design for manutacturng ).t

Screw theory i5 an elegant and powerful tool for
analyzing the motion of ngid bodies in contact, but it
is not always easy ta agply. Fortunately, designers of
precision kinematc couplings are not faced with the

¥ This reference summanses wark done by John Bausch for s
Pt O themis in the Mechamical Engineenng Departmans at MIT, Dr
Stocum. who was 2 member of Bausch's thesis commethes, fest
suggesied to Bausch thal screw theory would prowde a good
teaoeancal metnod for sTudying the problem of auiomaned fixrure

desagn

Motation

cd major and minor semuaxis of contact region
ellipsa
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Fis the magnitudes of the external applied load
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E, equivalent modulus of elasticity

| L distance from Ball f ta the cou phng centrond
Lo distance from ball / 1o side gk

| o CONTACt pressure
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R, ball radius
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Im the coordinates of the contact points of the
balls in the grooves ({ =x p 2)

o the coordinates of ug to three preload forces
(+=xy2) f

& the coordinates of an axternal applied load |
(E=x vy 2)

hy ™ contact forces’ directioncosines (& =2, 8§, +}

1 .+ Herz contact siress analysis parameters

. Hertz contact deflection: appraach of two far
field points

dzg transtational error motions (2 = x, y. 2) of the |
coupling centroid

& ratational error mations (7 = x. p, 2) of the |
couphng |

e, slope angle of the coupling mangle’s side

f it Poisson’'s ratio of the ball marerial |

Mgroowe  DISSON'S ratic of the groove material J
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Balil 11!

Coupiing centrowd

Angle bisectar
between sides
I3and 31

Ball 2

Plane conuaining the
conuact force veaors

Figure 2 For good stability in a three-groove kine-
matic couphing, the normals to the planes conaining
the contact force vectors should bisect the angles
between the balls

generic grasp-a-potato problem faced by researchers
in robotics. Thus, with respect to practical imple-
mentation of the theoretical requirement for stability,
for precision three-groove kinematic couplings, stability
and good overail stffness wiil be cbtained if the
normals to the plane of the contact force vectors bisect
the angles of the triangle formed by the hemispheres
{e.g., balls) that lie in the grooves.i Furthermore, for
balanced stiffness in all directions, the contact force
vectors should intersect the plane of coupling action
at an angte of 45°. The angle bisector concept is
iltustrated in Frgure 2. Note that the angle bisectors
intersect at a point that is also the center of the circle
that can be inscribed in the coupling triangle. This
point is referred to as the coupling centroid, and it is
only coincident with the coupling triangle’s centroid
when the coupling triangle is an equ:lateral triangie.

For a coupling where the bails lie on the vertices
of an equilateral triangle, the angle bisectors also
intersect at the triangle’'s centroid. If the normals to
the planes containing the contact forces' vectors were
to always pointtoward the coupling triangie’s centroid
instead of along its angle bisectors, then the coupling's
stiffness will decrease as the coupling triangle's aspect
ratio increases. This concept is itlustrated in Figure 3.
Most coupting designs seek to obtain good stiffness
in all directions; however, in some cases it may be
desirable to maximize the stiffness in a particular
direction.

Note that any three-groove kinematic coupling’s
stability can be quickly assessed by examining the
intersections of the planes that contain the contact
force vectors. For stability, the planes must form a
triangle as iilustrated in Figure 4.

1 From conversations and observations with Dr William Plummer,
Director of Optical Engineering, Polaroid Corp.. 38 Henry Street,
Cambridge. MA 02139, USA.
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Analysis of three-groove couplings

Figure 5 illustrates the information needed to charac-
terize a three-groove kinematic coupling. In order to
design a three-groove kinematic coupling, the designer
must provide the following information:

® The balls’ diameters and the grooves’ radii of
curvature.

® The coordinates xg,, yg;,. and zg; of the contact
points of the balls in the grooves.

® The contact forces” direction cosines xg,, 5, and
i8i

® The coordinates Xe,, Ye;, and za; of up to three
preload forces.

® The x, v, and z direction preload forces” magnitudes
Fp:, at each of the three points.

® The coordinates x,, y;. and z;, of an external
applied foad (the effect of more loads can be
evaluated using superposition).

¢ The x. y. and z direction magnitudes F,: of the
externaily appiied load.

® The moduli of elasticity and Poisson ratios of the
ball and groove matenals.

The following is the output from the analysis:

® The contact forces (Fg;).

® The contact stresses.

® The deflections at the contact points.

® The six error motion terms (4,, 9,, J,. &, &,. &)
that exist at the coupiing’'s centroid.

Force and moment equilibrium

The force and moment balance equations for the
system are

3] 3
ZFEI‘ZBI+EFPXI+FLX:O (1)
;=1 =1
8 3
S Fabai+ Y Fpu+Fu, =0 (2)
1= i=1
& 3
SFBJ-{'Sf“'EFPn"'FLzzo (3)
(=1 s =1
]
Z FEI(—EBHZE/‘:'-,'E!VB:)
i=1
3
+ N (=Feule + Feu¥e) — Fryzi + Fryy =0
=1
. (4)
Y Failxgizg, — vaxs,)
=
3
- S (FerZF’f— FthXPf') - FszL - FLZXL =0
r=1
(5}
6
Z FE;(—IB,'YB/?.HBNYB/)
;=1
3
= ¥ (=Fauyp+ Fruxp) — Fooyr + Fryx, =0
(=1
(8)
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Bail

Groove

The normals to the planes containing the conaa force vectors
meet at the center of the circle containing the three balls.

Groove

The normais to the planes containing the contact force vectors
are parallel W the angic bisectors of the lines between the balls.

Figure 3 Consider the design of a long coupling to lccate a laser head an an instrument. Compare the
stability of couplings designed by two methods that give the same solution for a coupling where the balls

jie on the vertices of an equilateral tnangie

~ @m@:

Least stable

Stable Marginally stabie

Figure 4 Different configurations for a kinematic coupling that illustrate how the intersections of the
ontact force vectors can be used to make an assessment of the coupling’s stability

planes contamning the ¢
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Figure 5 [nformation required to define a three-groove kinematic coupling
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The magnitudes of the six contact point forces
are easily calculated using a spreadsheet. Once the
magnitudes of the forces are known, they can be used
to determine the stress and deflection at the contact
points using Hertz theory.

Stress and deflection at the contact points

The accuracy of Hertz theory for determining the stress
and deflection of two bodies in point contact has been
verified many times.3 For the purposes of impiementing
Hertz theory on a spreadsheet used for design of
kinematic couplings, the following calcuiations need
to be made®§: First, the equivalent modulus of elasticity
must be determined for each of the contact points:

£, = ! (7)

e 2 2
1 - Nbait 1 - Hgroove
“+
Ebail Egroave

Next, the equivalent radius of the system s found:

1

R, = 8

¢ 1 1 1 ] (8)
-~ + +

R, R

mevor munes 2imaror

A3

munor

For the bali, R, = A, and both numbers have a
positive value. For the groove, A, = x, and R,
has a negative value.

The factor cosd is determined, which in the
general case (e.g., two crossed cylinders) takes inte
account the angle ¢ between the bodies:

1 1 32
cosd = AR, ( - )
R, R,

maior menoe

( 1 1 \)2
- _
R R

maros

1 1
+2(-————

g

Btre Bl
;1 1 12
x ( - Jcos 24 (9)
Ra.. R,/
For the case of a bail in a groove, Equation 9 reduces

to Re/;fﬁzmmm‘.

The factor cost is used in the evaluation of
functions of elliptic integrals whose values have been
tabulated for most engineering applications of Hertz
theory. The functions are referred to as «, 8, and «, and
when plotted over the full range of values given, it is
virtually impossible to fit curves to the data. In order
to faciiitate the incorporation of x. f, and 4 into a
spreadsheet, only the values of x, §, and 2 for cos d
from 0.0-0.9 are used. This incorporates most coupling
groove designs and allows for the foliowing pclynomial

$ The reader may also want to consider another means of approxima-
ung Hertz contact stresses. See ©. E. Brewe and 8 J Hamrock,
“Simphfied soiution for elliptical-contact deformation between two
elastic solids, " J. Lubrication Tech.. 1977, Trans ASME, Series F, 99,
485-487.
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approximations to be made with less than about 5%
error:

0.99672 + 1.2786 cos ! — 6.7201 cos* ¢
+27.37%cos® 8 — 41.827 cos* ¥

+ 23472 cos% 8 {10)
1.0000 — 0.68865 cos ¢ + 0.58909 cos? §
—1.3277 cos? ¥ + 1.7706 cos* 8

—0.99887 cos® ¢ (11)
; =0.75018 - 0.042126 cos ¢ + 0.29526 cos? 8
- 1.7567 cos® 6 = 2.6781 cos* 0

— 15533 cos® 0 (12)

pd

i

The contact region will be an ellipse, where the major
and minor semiaxis, respectively

(3FR,_,)* 3
cC =3 —

1/3
dsz(gFRe) (13)

. 28, 2E,
The contact pressure is given by
. (14)
2ncd

The contact pressure can be used to evaluate the state
of stress below the surface. For most applications, one
can merely specify an allowable contact pressure for
a given material. The deflection (distance of approach
of two far field points in the bodies) is given by

NN
°= "(3/?,..53) (%)

Note that this assumes that the bail is effectively a
hemisphere. In other words, the ball must be attached
to one part of the coupling in a manner that makes
deformation of the attachment zone negligible com-
pared with the deformation of the contact region.

Kinematics of the coupling’s error motiens

The contact between the ball and the groove actuaily
results in an eiastic indentation of the region. Combined
with a finite coefficient of friction, it is reascnable to
assume that there is no reiative motion between the
ball and the groove at the contact interface. !f one
makes this assumption and then caiculates the new
position of the balls’ centers using the contact
displacements and contact forces’ direction cosines,
then one finds that there is not a unique homogeneous
transformation matrix that relates the oid and new ball
positions. These factors make the calculation of a
kinernatic coupling’s error motions a nondeterministic
probiem.

Fortunately, if the distances between the balls,
determined using their new coordinates, do not change
greatly, then reasonable estimates can be made of the
coupling’s error motions. Using the design theory
presented herein, a spreadshest can be used to show
that the change in distance between the balls is
typically five tc ten times less than the deflection at

7
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the contact points. Furthermore. the ratio of the change
in the distance between the balls o the distance
berween the balls is tvpically an order of magnitude
[ess than the ratio of the deflection of the bail to the
ball diameter | see the caiculations m Appendix A,
Thus. estimates of the coupling’s error monions can
De made in the following manner:

¢ The product of the deflection of the balis with
the contact forces’ directhion cosines are used to
caiculate the bail's deflecthions. The displacements
of the coupling wiangle's centroid, 8, (§ = x. y. 2).
are assumed to be the equal o the weighted
average {by the distance between the balls and
the coupling centrosd } of the ball's deflections:

e = AT T '.5.3_-'1 "l.i‘.'-’_'r"""—"r'" [16)

' L s Ji-Eu: Llrf 3

® The ratations of the coupiing abouwt the X- and Y-
axes are convermently determined for the case of
a coupling whose grooves lie in the X-¥ olane
{ather anentatons confuse the angie definbon
in rhe spreadshest anaivsis). To cetermine the
rolations. the alutudes of the couphng thangle and
s sides’ orentanon angres must be determined
as shown in Fgure 6. With these geomatric
calculanons, the rotations about the X- and Y-
axes can be determined:

15.1 -!j 2 . Lig
By = —— COS Uyy + —— £O8 Hyy + = [0S Hyz
Ly 23 Lin 342
(173
iR ¥ v
By = L0 510 Hag i Sim gy + S SN Hyg
Ly 23 2m Liaz
(18

# The coupling's rotation about the Z-3xs 1%
assumed to be the average of the rotanons about
the Z.direction through the coupling centrowd

¥ Ball i 1y.pp.Tp

; f"

j

h

\

|
h

i
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Carpiung o II.JI{

ApeFg g J
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Hill Tt mp.pg.8 Bail 10 my.pq. g

Figure 8 Geomety of a planar kinematic coupling

T2

calculated for each ball. For example, the rotatian
about a Z-direction through the coupling centraid
caused by ball 1 is

o lzgvdy + zggd;ﬁl‘r—'—. [ Bgioy + flgzdal”
R
E Slﬁmfﬂs:dw - IE;HII?_J {19.:'

The rotation error aooul the Z-aos of the coupling
15 assumed to be

o

M=

g ST T (20)
3
The errars can then be assermbled inta a hoamao-
geneous transformation matnx for the coupling that
allows for the determination of the transiauonal errors
d,, 0, and 4, at any paint x. ¥, or 2 in space around
the coupling:

i_-ﬁ, Ir 1 —k; &, oy [T x=nT
I I R O A | 2
L1l Lo o o 1]L 1 |
Mo e
| |
2 (21)
|J-Z.-
Lo J

In the homogeneous transtformation matnx it has been
assumed that the rotabions ara small, so small angle
rigonometric approximations are valid, Also, the
arrar motians had bean calculated about the coupling
tnangle’'s centroid, which may not ba coincident with
the coordinate system’s angin: hence, the centromd
coordinates are subtracted from the location at which
the errars are o ba determined.

Practical design considerations

With 8 spreadsheet, the design engineer can easily
play “what " design games 1o arrive at a theoratically
workable kinematic couphing for virtually any applica -
tign, However, the prablem still remains: how o
manufaciure the coupling ?

Silieen mitnde or silicon carbide are the best
materials for the spherical parts of the coupling. ' Eithar
bails ar eylinders with a hemisphencal end can be used
in the coupling. & cylinder with a spherical end can
be pressed or epoxied intoc & hole to oblain near
monglithic properties. Mounting of a bail takes more
care 10 ensure (hat the compliance of the mounting
method s very low compared with the compliance of

Stangard size wlicon mitnde balls are avalabde from Carbec
Bearing Company. 10 Airport Road, Eagn Granby. CT 0B0Z6. LISA
{203-663-8071), Cylinders with sphencal ends can also be
manutactured
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the coupling. Ball mounting methods include the
following:

® A shaped seat can be machined, ground. or
electrodischarge machined into the mounting
surface for the ball. Shapes for the seat. in order
of increasing ¢ompliance, inciude hemisphere,
cone, and tetrahedron. For the hemisphere, the
bottom of the hole should be counterbored to
prevent contact of the bail near its pole, which
would increase lateral compitance. For any of
these seats, an extra same size ball should be
burnished in ptace or pressed in until the surface
is brinelled. which will help to ensure that the bail
does not make contact at only two points in the
case of a spherical or conical seat. A ball can then
be brazed or epoxied into the seat to make the
ball act as an integral part of the structure.

® A surface can be ground flat and then annular
grooves ground around the ball locations. Sleeves
can then be pressed into the grooves. The balls
can then bhe pressed into the sieeves untl they
contact the flat surfaces. The balls should deeply
brinell the flat surface in order to increase the
bearing area and decrease the comphiance.

With any of these methods. the difficulty in accurately
locating the balls from fixture to fixture may suggest
that the balls should be affixed to a rough machined
fixture. The fixture would then be clamped to the
grooved portion of the coupling and finish machined.

The ideal material for the grooves would also be
a hard ceramic because it would not corrode. and the
coefficient of friction between the ball and the groove
would be mimimized, which would maximize the
repeatabiiity of the coupling. The grooves can be
profile ground in a moneclithic plate using a profile
grinder and an index table, or the grooves can be made
in modular inserts that are bolted or bonded into place
on the coupling.

Resuits and conclusions

The analysis methods descrnibed previously were
implemented on a spreadsheet whaose output is given

PRECISION ENGINEERING
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in Appendix A. The spreadsheet has a true/false
option that allows the user to quickly enter data for a
planar kinematic coupling where it is assumed that the
grooves are spaced 120° apart and the direction
cosines correspond to contact between the balls and
the grooves at 45’ angles with respect to the X-Y
plane. When faise is entered, the user must enter
position and orientation data for each contact point.
The spreadsheet atways assumes that the centroid of
the coupting ts located where the angie bisectors of
the coupling triangle meet.

In order to test the spreadsheet, forces were
applied along axes of symmetry and it was checked
to ensure that the expected displacements were
obtained. For exampie, a Z-direction force should yield
equal forces at all the contact points and oniy a Z
dispiacement should occur. For all test cases, the
results were as expected.
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Appendix A

[ A | ] [ g i o [ E ] F [ =] H

[1 [Appendix A/ | :

| 2 |Kinematic Coupling Design Spreadsheet | _
[ A [Snupliay getewiry £ ==
4 -'{Ypl:mummmdummubﬂl:mhm
5 .Fm:undu-ﬂumpm;dmmmllmmmﬂmdndimmx‘!pm
% |Standard |20 degroe equal size groove soupling? TRUE |

7 |Por non stancard desighns, &nter guomelry after resulls secnon

Malerial properies |

|Herir tiress 1

3 |Dhall= | 0.012[Ball diameter =0
W |Rgroave = TTOBOMMI Graowe radius (negative for 4 ough) 5iN 6. I50E+ 09|
|14 |Deoupiing = 0,100 C cupling, diameter ! J67% Alumma | BSS9E DY)
V1 | Fpreload = ~104M) Prejond force over each ball RC 62 Steell  J.6135E-19)
12| Xer = D000 X locanon of error reporting - Elaxiic modulus o
13 [ Yar = 0.0001 ¥ ecanon of sror reporiing | SiNi  J.1050E+11
14 e = D000 £ Iocaton of emor reporung | T Abuninal 3.0360E<11]
15 | Auto select mauml values assume that melric units are used (mks) RC 61 Seweell  20M3AE«11
16 [Matlab = 1/ Enter 1 for 5it bail, 5iN groove |Petton ralio
1T : Erier 2 for S04 bail, Alumind groove RN -J.ﬁj
18] Enter 3 for 5iM ball, RC 62 Fe groove RER Aluming 021
el Enter 4 for RC &2 Fe ball, BT A2 Fe groove RC 62 Ste=| 0.29
20 ) Erter 5 for siher values and entes them for each bail and groove. )
21| Applied forces' Z,Y.Z. values and coordinates Coupling centroid Effective K (%/micron)
22'Fla= WXL = 0000 5e T 001 Fxen 110
| 23|FLy = MYL = 00000 | ye Q0001 Fyray FALSE
{24fFL:= mz:. = 100012 0017 Fridz FALSE
25 Results 3
28 | CALTION: Graave numnil,rwn must be positive) ¥
27 | Ball-Groove | i
2 B [Groowve asrmal forces (Conidet rreTs tresmAllow  Dafteceion | +inda bail] . b
79 | Fomane T 150E+0%isigane JA5E+091 0.7 delore T0E-0T
30 | Fontwo | 665E+0 sgren 4.66E + D91 0.9 delowa LEOEDT
31 | Bail-Groove I ! ! 1 &,
12 | Groove normal forces C onract siress i Daflection T
33 | Fomthaes 6.T1E+D1 sigthree LETE+R" 0.6 |deihree 1. 12E-07
34 | Fomdour | T13E+03sighour LTTE«09 0.7 |deliour -6.66E 08|
15 | Bail-Groove 3! [
| 38 | Graove normal forces | Coneact siress | Deflecnian
37 |Famlive [ TOLE+02|sighve 1L.TIE+D9| 0701 del five 6.6RE 0B |
38 = T T.A4E+Dlisigsin 4 BIE D0 0,721 delsix LOSE0T] 1
10 |Error morions | ] |
40 | Error matioar are ar XV T coordinares: 0004 000 0000 |
41 |deltaX i 4.28E-071 : ! | |
432 [dela -131E-09 Homagenous Trarngormation Marra: !
43 |[deins 394E-0%] 1.O0E: 001 BOGED6|  SSSE44i  3JGENT
a4 | EpX TSEE-DH| T RGRE-D6  LOUE<DN  SS6E-08 1 MWE-0Y
T § SRE-061 SEEEDG  SS6E-08 LOOE+  1S4E-I9 =
| 48 |EpsZ | B.AGE-DAI 0.0 E+ i n.mE+H: LEAW  LBOE«H)
1_!3_ Generic data eniry for nondl20 degree coupiings
a8 |NOTE! Far calculzaen af angular ¢rrars, the coupling is assumed 0 de in the XT plame.
101 Ball [ mu lie in quadrants [ or 2, and Balls 2 & 3 mugt lie in quadrans J and &
S0 | Ereer ¥.VJF coordinates and aipha, bera. gamma direchion corines for Ball |
51 Conact pamnt | Cantact pomt 3 ]
52 |Xba= O W23 (Xbh = 0. K243 ]
51 |Thaw 0, D5 (R0 ¥ b = 050000 |
54 |Zba= 0. 025000/ 7k = 025000 ) |
55| Aba= 0. 707107] Abb = 2.707107
56 |Bba= 0000 Bbh = E.Wi i
57 Ghaw [ B.T07I07ICRE = 0707107 I E
il Enier cwd.r.‘uﬂmnr or groove | and ball [
59 |Egone = 1 105E+11|Groove material elastic mu:haln {
[50 |vgone = | .27 Groove malefial Poisson raus o | !

T4

APRIL 1992 VOL 14 NO 2



Slocum. Three-groove kinematic couplings

A T 8 | c [ 1] | E | F G T H

61 |Rgone = ; -1000000|Groove radius of aurvange | | :

€ 2 |Ebone = | 3.105E+11|Ball material elastic modulus | | ;

63 [vbone = | 0.271Ball material Poisson ratio i |

54 |Dbone = 0.012|Ball diameter | 1 ! ‘

65 |Sone = | 675E+09(Allowable Hertz stress ! \ i ;

686 |Enter XY Z coordinates and aipha, beta. gamma direction cosines for Ball 2 !

87 ‘Contact point 3 'Contact point 4 | '

68 |Xbe = | 0.045420[Xbd = -0.041180/ !

69 {Ybc= \ 0.021326/Ybd = -0,028674) : |

70 |Zbc = 1 -0.025000| Zbd = I -0.025000! [

71 ]Abc = | 0353553jAbd = i -0.353553]

72|Bbc= | 0.612372[Bbd = 0.611372

73 |Gbe = | 0.7071071Gbd = 0.707107

7 4 |Enter characteristics for groove 2 and ball 2 : i

75 [Egtwo = 3.105E+11{Groove material elastic modulus ‘ | !

76 |[vgiwo = 0.271Groove material Poisson ratio | i i |

77 |Rgtwo = -1000000! Groove radius of curvamre |

78 [Ebtwo = 3.105E+11|Ball material elastic modulus | ‘

79 |vbtwo = 0.27!Ball material Poisson rato i

30 |Dbtwo = 0.012|Ball diameter :

81 {Stwo = 6.7SE+09/ Allowable Herz stress ;

8 2 |Enter X, Y Z coordinates and slpha, beta, gamma direction cosines for Balli 3|

813 Contact point § ‘Contact point 6

84 |Xbe = i 0.041180( Xbf = t 0.045423| i |

85 |Ybe= i -0.028674| Ybf = | 0.021326! 1 ‘

86 |Zbe = -0.025000/Zbf = . -0.0250001 i

87 [Abe = 0353553 Abf = 0.353553| | i

88 |Bbe = 0.612372{Bbf = 4.612372] !

89 {Gbe = 0.707107|Gbf = 0.707107 |

9 0 | Enter characteristics for groove 3 and bail 3 [ !

91 ]Egthree= | 3.105E+11]Groove material clastic modulus i

9 2 |vgthree = 0.27]Groove material Poisson rato | |

93 [Rgthree = -L000000: Groove radius of curvamre ; .

9 4 |Ebthree = 3.105E+11|Ball material elastic modulus !

85 |vbthree = 0.27|Ball material Poisson ratio : !

9 6 | Dbthree = 0.012|Ball diameter | | |

97 |Sthree = 6.75E+09| Allowable Hertz stess | ' !

9 8 [Enter preload forces' X.Y Z components and coordinates | :

99 [Fprone= | 0[Fpxtwo = 0|Fpxthres = [

100|Fpyone = j 0[Fpytwo = 0|Fpythree = []]

10 1| Fpzone = -1000| Fpztwo = -1000|Fpzthree = | -1000¢

102| Xpone = 8] Xptwo = 0.04330127| Xpthree = | 0.04330127) :

103| Vpone = 0.05| Yprwo = .05 Ypthree = 0.025) ;

104]Zpone = 0.02417ptwo = 0.024|Zpthree = 0.024/

1 0 5{Calculations: | ' !

106|Build Force Moment equilibrium matrices: AF = B (Equations 1-6) !

107[Mamix A [ : Marrix F [B with loads
108{Fml Fon2 Fbn3 Fond Fon5 Fbn6 !

109 -7.07E-01 7.07E-01 3.54E-01 -3.54E-01 3.54E-01 -3.54E-011Fbnl -9.00E+01
110 0.00E+00 0.00E+00| -6.12E-01t 6.12E-01 6.12E-01 -6.12E-01|Fbn2 ! 0.00E+00
111 1.07E-01) 7.07E-01] 7.07E-01 7.07E-31 7.07E-01 7.07E-011Fbn3 i 3.00E+03
112 3.54E-02] 3.54E-02] -3.(4E-02 4.97E-03| -4.97E-03 -3.04E-02/Fbnd \ 0.00E+00
113 1.47E-02 -147E02 2.33E-02 3.80E-02| -3.80E-02 -2.33E-02[FonS ] 0.00E+00
114 3.54E-02 -3.54E-02 3.54E-02| -3.54E.02| 3.54E-02 -3.54E-02/Fbné ! 0.00E+00
115|Res. Forces with applied loads Res forces with preioad only i !

11 6{fbnone 749.53 |fone ‘ 707.11 i !

117|fbntwo 664.68|ftwo 707.11 !
118{fbnihree §70.64/ fthree 707.11 !
11 9| fbnfour 713.07|ffour 707.11 |

12 0|fbnfive 701.15|ffive 707.11 |
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Slocum: Three-groove kinematic coupiings

A [ 8 C N [+) | E |  F G M
12 1|fbnsix i 743 .57 |fsix ! 707.111 |
12 2| Original bail corrdinates | | 1
12 3[xbone0 [ 0.0000000]xbtwoC -0.0433013/xbthreeO | 00433013 |
12 4| yboneO | 0.0500000;ybrwo0 0.0250000| ybthreeQ T -0.0250000 j
12 5|zboneQ . -0.0165147[zbtwol} 00165147 (2bciwee0 | -0.0165147 i
12 6|New ball coordinates (=original + ball deflection*direction cosines) 1 :
12 7|xboneN T 0.0000007TxbtwoN | 0.0433011xbthresN T 0.0433014 :
12 8| yboneN I 0.0500000]ybtwoN T 0.0250003]ybtreeN | -0.0249957] :
1 29fzboneN -0.0165147|zbtwoN [ 0.0165145]zbthreeN i -0.0165150[ |
13 0{Ball centers’ deflections { ! i _
13 1]dxone . 6.72E-07|dxtwo 1.69E-07 |dxthree I LE7E-O7 il
13 2 dyone | 0.00E+00ldytwo 2.93E-07]dythres [ 289EW |
13 3ldzone | 6.T2E-0R[dztwo 244E-07]dzthree T -239E07 ]
13 4{Theory applicability check: | i | | |
13 5{initiial dist. berween bails i Final dist. between balls : Difference i
136(Lod [ 0.086603[LotN ~ [ 0.086603|DLod [ -5.05E07
13 7|Lal T 0.086603/LuN | 0.086603{DLal ‘ 2.41E-09 !
138]Ltol | 0.086603[LwoN T 0.086602!DLwl U S.03E-070 i
139|Change in length/distance between balls i Deflection/ball radiug Ratio (must be >3) I
140 5.83E-06] : : 8.00E-051 © T 137E+01)
141 2.79E-08l ‘ 6.86E-05] © 2.46E+03
142 5.80E-06} ] s 6.75E-051 . 1L16E+01] .
1 43| Coupling centroid is assumed lo be at intersection of coupling tiangle's angle bisectors . |
1 4 4/ Initial cenwroid Distance from ball 1o centroid | Error motien at centroid from weighted ball motions
145xci |~ 0.000000000| Deone T 0.050000000!dxc ] 3.36E-07) !
146 yci " 0.000000000! Detwo 0.0500000001dyc T -139E-09¢ !
1471zc1 1 0.016514719]Dethree 0.050000000{dzc i 3.94E-09 i
148|Onginal angles berween balls | Original alitude lengths \ :
149! Angone T " 60.0000]angle at ball I [Acnc T 0.0750{Bail 1 to side 23 |
150 Angtwo 1 60.0000]angle a1 ball 2 [Atwo 1 0.0750{Ball 2 to side 13 ]
15 1[Angthree [ 50.0000]angle ut ball 3 |Athiree T 0.0750{Ball 3 to side 2 1 .
135 2|New angles berween balls Original sides’ angle with X axis {
153AngoneN | 60.0000/angle at bail 1 [ Aot T 60{Side opposite ball 3 '
15 4] AngtwoN 59.9994[angle at ball 2 |At [ 0[Side opposite ball 1 ]
13 5[ AngthreeN 60.0006] angle as bail 3 [Ato T 120!Side opposite ball 2 T
15 8| New sides’ angle with X axis 1 [ :
157/AotN | 59.95980894|Side opposite bail 3 | ! 1
158|aaN | 0.000384816]Sidc opposite bali | | ! i ]
159[AtoN 1 119.9998062/Side opposite bail 2 ‘ i
18 0}Original altitudes’ slope angles and Y intercepts i ! |
16 1} Amwo0 30]Abtwol 3.46945E-18I :
16 2| AmihreeO 150/ AbthrecO .3.46945E-18] |
18 3|Rotation about opposite side (radians) | ! :
164[Tat [ 8.96E-D8[rotation 2bout side 23 due to Z motion at ball | l
165|Tio | 3.25E-O6[rotation about side 13 due to Z motion at ball 2 i i
166{Tot — | 3.19ED6[rotation about side 12 due to Z motion at ball 3 | o
16 ?|Coupling error rotations ! | |
16 8{EpsX T 556E.08 EpsZ1 I 1.34E-051Z rot from ball 1 .
169|EpsY | 5.58E-06 EpsZ2 ! &.76E-06/Z rot from ball 2 ‘.
17 0|EpsZ 1 B8.96E-06 EpsZ3 [ 6.67E-D6[Z rot from ball 3 ‘
17 1{Coupiing HTM | IPoint of interest
172 .O0E+00] ~ -3.96EJD4] 5.58E-06 J36E-07 Xerr 1 -5.78241E-20] \
173 S96ED6]  1.OOE+D)]  5.56E-08] _ -1.39E-09(Yerr -5.20417E-1§] i
174  -5.58E-06 5.56E-08)  1.00E+00 394E-09|Zexx 0.016514719] 1
17§ 0.D0E+00 0.00E+00  0.00E+00]  1.00E+00| 1 1 |
17 6| Ervor displacements at the point of iierest | !
17 7{DeltaX [ 4.28E-07 | |
17 8 Delta¥ | -231ED8
17 #{DeliaZ | 394E-09
180 | 0
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