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Abstract

Friction affects several aspects important to the design
of kinematic couplings, but particularly the ability to
reach its centered position is fundamental.l It becomes
centered when all pairs of contacting surfaces are fully
seated even though a small uncertainty may exist about
the exact center where potential energy is minimum. For
many applications, centering ability is a good indicator
for optimizing the coupling design. Typically, the
coupling design process has been largely heuristic based
on a few guidelines [Slocum, 1992]. Severa simple
kinematic couplings (for example, a symmetric three-vee
coupling) are compared for centering ability using
closed-form equations. More general configurations
lacking obvious symmetries are difficult to mode in
this way. A unique kinematic coupling for large
interchangeable optics assemblies in the National
Ignition Facility motivated the development of a
computer program to optimize centering ability.
However, space limits the description of the program to
the basic algorithm. Currently the program is written in
Mathcad™ Plus 6 and is available upon request.2

Background

Kinematic couplings serve many applications that
require: 1) separation and repestable engagement, and/or
2) minimum influence that an imprecise or unstable
foundation has on the stability of a precision
component. An object that is rigid, relatively speaking,
requires six independent constraints to exactly constrain
six rigid-body degrees of freedom. An object with one or
more flexural degrees of freedom requires additiona
congtraints; for example, a four-legged chair flexes
torsionally to fit the shape of the floor. This paper deds
only with six-constraint couplings supported through
local surfaces and held in contact by a consistent nesting
force. Quite often the nesting force is the weight of the
object being supported, or it may result from a spring or

Thiswork was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract No. W-7405-Eng-48.

1In this paper, the term kinematic coupling refers to
any connection device based on pairs of contacting
surfaces that provide six constraintsin an ideal sense.

2 Email requests to hale6@lInl.gov.

other force device. Idedlly, the nesting force causes all
surfaces to engage freely and with uniform loading.

Figure 1 shows the two classic types of kinematic
couplings, the three-vee coupling (left) and the cone-vee-
flat coupling (right). The symmetry of three vees offers
several advantages. more uniform contact stresses,
thermal expansion about a central point and reduced
manufacturing costs due to identica features.

Conversely, the cone (or the more kinematically correct
tetrahedral socket) offers anatural pivot point for angular
adjustments. The three-vee coupling is the natural choice
for adjustmentsin six degrees of freedom.

Figure 1 The three-vee coupling has six constraints
arranged in three pairs. The cone-vee-and-flat coupling
has six constraints arranged in a 3-2-1 configuration.

Figure 2 The threetooth coupling forms three
theoretical line contacts between cylindrical teeth on one
half and flat teeth on the other half.



The local contact areas typical of these kinematic
couplings are quite small and require a Hertzian analysis
to ensure a robust design. Greater durability is achieved
by curvature matching such as a ball against a concave
surface and/or by using ceramic materials such as silicon
nitride balls against tungsten carbide gothic arches.
Designs based on line contact rather than point contact
offer a significant increase in load capability. For
example, a kinematic equivalent to three vees is a set of
three balls in three conica sockets with either the balls
or the sockets supported on radia-motion flexures.
Alternatively, the three-tooth coupling shown in Figure
2 is based on three theoretica lines of contact formed
between cylindrical and flat teeth. Each line constrains
two degrees of freedom giving a total of six constraints.
Manufactured with three identical cuts directly into esch
coupling half, the teeth must be straight along the lines
of contact but other tolerances can be relatively loose.

Friction Effects

Friction affects at least four important characteristics of
a kinematic coupling as indicated by order-of-magnitude
estimates that all include the coefficient of friction .
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Tangential friction forces at the contacting surfaces
may vary in direction and magnitude depending how the
coupling comes into engagement. This affects the
repeatability of the coupling and the kinematic support
of the precision component. The estimate for
repeatability is the unreleased frictional force multiplied
by the coupling’s compliance. The estimate is derived as
if the coupling’s compliancein all directions is equal to
asingle Hertzian contact carrying a load P and having a
relative radius R and elastic modulus E. The frictiona
force acts to hold the coupling off center in proportion
to the compliance. This estimate will underestimate the
repeatability if the structure of the coupling is relatively
compliant compared to the contacting surfaces.

Kinematic support is important for stability of
shape of the precision component. The estimate for

kinematic support simply gives a bound on the
magnitude of friction force acting at any contact surface.
A sensitivity analysis of the precision component will
determine a tolerable level of friction that the coupling
can have. This may drive the design to include flexure
elements and/or procedures to release stored energy. If
repeatable engagement is not so important, then
constraints using rolling-element bearings offer very low
friction. For example, a pair of cam followers that
contact with crossed axesis equivalent to aball on a flat
but with twenty or so times less friction.

In some cases frictional overconstraint is valuable
for increasing the overall system stiffness. Provided the
tangential force is well below what would initiate
dliding, the tangential stiffness of a Hertz contact is
comparable to the normal stiffness [Johnson, 1985].
This was important for the Nationa Ignition Facility
where frictiona overconstraint iffened the first
torsional mode of optics assemblies sufficiently to meet
dynamic stability requirements.

Centering ability can be expressed as the ratio of
centering force to nesting force and the estimate shown
istypical. A larger ratio means the coupling is better at
centering in the presents of friction. Later, it is
convenient to express centering ability as the coefficient
of friction where the ratio goes to zero. For the estimate,
the limiting coefficient of friction is 0.5/1.3 = 0.38. The
coupling will center if the real coefficient of friction is
less than the limiting value.

Centering Ability

The contacting surfaces of a kinematic coupling come
into engagement sequentially unless it is placed
precisely at the exact center. The path to center is
constrained by the surfaces dready in contact. For
example, five surfaces in contact constrain the coupling
to dide along a well-defined path. Four surfaces in
contact allow motion over a two-dimensional surface of
paths and so forth. Although there are infinitely many
paths to center, only the limiting case is of practical
interest for determining centering ability. Further, it is
reasonable to expect the limiting case to be one of six
possible paths that have five surfaces in contact.3 This
point is demonstrated using the three-vee coupling.

For any given path to center, the centering force
that results from the nesting force may be derived using
Statics and the Coulomb law of friction. Figure 3 shows

3 The exception to this statement is the ball-cone
constraint of the cone-veeflat coupling since the cone
provides only one constraint until the ball is fully
seated. A tetrahedral socket remedies this situation.



examples of centering force (per unit nesting force)
plotted versus the coefficient of friction. These curves
were generated from closed-form equations yet to be
discussed. Although the curves look simple, the
equations are rather tedious to develop even when the
coupling has simple geometry and the load is
symmetrical. Compound this with the possible number
of paths to center and it becomes obvious that a
systematic, computer-based approach is essential for
designing more general configurations of couplings.
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Figure 3 Centering force versus coefficient of friction.

Figure 4 shows a symmetric three-vee coupling
rotating about its instant center to reach the center
position. This path has five surfaces in contact and is
the limiting case along with five other symmetrically
identical paths. Equation 1 provides the centering force
for this path assuming the nesting force is uniformly
carried by three balls. Note, the sides of the vees are an
angle oo with respect to the plane of the three balls. In
addition, there are two sets of symmetrically identical
paths having four surfaces in contact. Equation 2
provides the centering force for the more limiting path
where the coupling trand ates radially along one vee. The
other path is rotation about one ball.
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This example shows that the path with five surfaces
in contact has less centering force than either path with
four surfaces in contact. This may not be universally
true for a general kinematic coupling. That is, a path

with five surfaces in contact may have greater centering
force than another path with four surfaces in contact.
However as the coupling continues toward center, the
centering force cannot increase as it picks up the fifth
contact surface. Thus, we need only look at paths with
five surfaces in contact to determine the limiting case.

Figure 4 The limiting case for centering occurs when
the three-vee coupling slides on five surfaces producing
rotation about its instant center.

It isalso useful to compare the centering forces for
the other types of kinematic couplings. Figure 5 shows
the cone-vee-flat coupling transating along its vee. This
path is underdetermined for a conical socket but is
representative of the limiting case. It was chosen to
simplify the expression for centering force given in
Equation 3. Referring back to Figure 3, it may come as
a surprise that the cone-vee-flat coupling has the least
centering ability of the three types. However, significant
improvement is possible by carrying more load with the
cone and by increasing the cone angle.
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Figure 5 The limiting case for centering occurs when
the cone-vee-flat coupling slides on the vee and flat with
the cone seeking center.



Equation 4 gives the centering force for the three-
tooth coupling as it trandates on four surfaces. The
centering force with five surfaces in contact is very
difficult to modd in closed form but behaves similarly
to the limiting case for the three-vee coupling. For
example, the limiting coefficient of friction for the
three-tooth coupling is 0.319 at oo = 45° or 0.352 at o =
60°. The limiting coefficient of friction for the three-vee
coupling is 0.317 at oo = 45° or 0.364 at o. = 60°.
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Figure 6 Three views of the optic assembly supported
by six constraints. The arrows are proportional to forces.

Centering Optimization Algorithm

As discussed, the limiting coefficient of friction occurs
along a path defined by five surfaces in contact. There
are six such paths each corresponding to one of six
surfaces not in contact. Using [6 X 6] transformation
matrices, it is straight forward to reflect contact

stiffnesses to a global coordinate system (CS). Adding
any five results in a stiffness matrix for the coupling
that has zero stiffness along the path. The eigenvector
corresponding to the zero eigenvalue gives the direction
that the coupling slides in the global CS. Using the
same transformation matrices, a local dliding vector is
determined for each surface. Then a force-moment vector
is calculated for each surface using the Coulomb law of
friction and a unit normal force. Transforming back to
the global CS, the vectors are assembled into a matrix
that when multiplied by a vector of contact forces gives
the force-moment resultant on the coupling. The inverse
of the matrix is useful because it gives the contact forces
for agiven coefficient of friction and applied load. Then
the equation for the surface not in contact is solved for
the coefficient of friction that makes its normal force
zero. Thisis done for each surface not in contact, and the
minimum is the limiting coefficient of friction.

Figure 6 shows one example of an optics assembly
for the National Ignition Facility. This example has four
angular parameters. the axis angle of two vee blocks
(constraints 1-2 and 3-4); the more shallow face angle of
the vee blocks (constraints 1-3); the steeper face angle
(congtraints 2-4); and the angle of the upper constraints.
The user determines the optimum by adjusting the
nominal parameter vector 6 based on curves that show
the effect of individually varying parameters. Figure 7
shows the optimal parameter set for this example.
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Figure 7 Limiting coefficient of friction versus
varying model parameters. All curves pass through the
nominal parameter set as indicated by the dashed line.
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