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Abstract

Kinematic couplings are well known to the precision engineering community as simple devices that provide rigid, repeatable connection
between two objects through usually six local contact areas. They serve many applications that require 1) separation and repeatable
engagement, and/or 2) minimum influence that an imprecise or unstable foundation has on the stability of a precision component. Typically,
the coupling design process starts by arranging or adapting one of two classic configurations, the three-vee coupling or the tetrahedron-
vee-flat coupling, to suit the geometry of the application. It is often sufficient to analyze only the contact stresses and perhaps the coupling
stiffness when the configuration remains fairly conventional (i.e., planar) and the application is not particularly demanding. Otherwise, effort
spent optimizing the configuration through additional analysis and/or testing is well worthwhile. This paper proposes several optimization
criteria and presents analysis techniques for optimizing kinematic coupling designs. The general modeling approach uses [63 6]
transformation matrices to reflect contact stiffness matrices to a common coordinate system where they are added together as a parallel
combination, for example. This method has wider applications particularly for flexure systems, which will be the subject of a future article.
In addition, the reader may find the kinematic coupling designs presented in this paper useful for future applications. © 2001 Elsevier
Science Inc. All rights reserved.
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1. Introduction

The origin of the kinematic coupling dates back at least
to 1,876 when James Clerk Maxwell described the three-vee
coupling as a method to establish a definite position [1,2].
He also described the tetrahedron-vee-flat coupling in use
by William Thomson, now widely known as Lord Kelvin
and hence the term Kelvin clamp. Evans found evidence
that both Maxwell and Thompson learned kinematics from
Professor Robert Willis, but apparently Willis’ own publi-
cations do not support him as the innovator [2]. In particu-
lar, Thompson mentions being taught the geometrical (or
kinematic) method by Willis some thirty years earlier, ap-
proximately 1,849 [3,2]. Regardless of the origin, these two
classic configurations, shown in Fig. 1 provided the basis
for most kinematic couplings developed since that time.

Kinematic couplings have traditionally been used in in-

strument design where the loads typically are relatively light
and static. Kinematic couplings having well engineered
contact areas and/or advanced ceramic materials are quite
robust and suitable for demanding applications requiring
high stiffness and load capacity [4,5,6]. This paper does not
present specific guidance regarding Hertz analysis or mate-
rial selection as considerable information already exists in
the literature [7]. Instead, it emphasizes the process of
determining the best configuration for a given set of objec-
tives and design constraints. In this regard, Maxwell con-
tributed a very elegant and general guideline. Each con-
straint should be aligned to the local direction of motion
allowed by the five other constraints, assuming that they
remain engaged and are free to slide [1,8,9]. Intuitively this
is a good idea because each constraint would contribute its
full stiffness and carry the minimum load. For example, this
guideline suggests that the faces of a vee should form a right
angle. Another published guideline, specifically for planar
three-vee couplings, turns out to be completely consistent
with Maxwell. As Fig. 2 shows, the axis of each vee should
bisect the angle formed between it and the other two vees
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[8,9]. The fact that this axis also intersects the instantaneous
center of rotation formed by the other two vees means that
rotation about this center would not produce translation
along the vee.1 Maxwell’s criterion is satisfied for Fig. 2 if
the faces of each vee also form a right angle.

Mathematically, the system matrix describes the geom-
etry and behavior of the coupling, both as an equilibrium
condition between a vector of contact forces and the applied
force-moment vector, and as a compatibility condition be-
tween a differential translation-rotation vector and a vector
of contact deflections. The condition number of the system
matrix has been postulated to indicate the quality of the
configuration [10]. A very large condition number means
that the matrix is near singular or ill conditioned. However,
since the condition number also depends on the size of the
coupling and the units involved, the value cannot be used in
an absolute sense to evaluate the design. In contrast, the
approach taken in this paper builds mathematics around
some meaningful physical measure. For example, friction
present in the contacting surfaces acts to impede the cou-
pling as it slides to a fully engaged or centered position.

Thus, a coupling designed to maximize centering ability, as
measured by the coefficient of friction that just impedes
sliding, optimizes a meaningful physical measure. In similar
fashion, a clever graphical approach to the centering prob-
lem is described in an excellent book on exact constraint
design [11].2

Friction also negatively affects the repeatability of a
kinematic coupling by trapping uncertain tangential forces
(in magnitude and direction) at the contacting surfaces. One
approach to this problem adds tangential compliance at the
contacting surfaces, for example, with flexure cuts [12].3

The extra tangential compliance minimizes frictional hys-
teresis resulting from applied forces or temperature varia-
tions. A fairly common suggestion for relieving residual
friction forces is the temporary application of vibrational
energy, but this does not address frictional hysteresis. One
approach explored in this paper optimizes the coupling
configuration for repeatability.

1.1. Organization

The body of this paper begins by explaining the basic
modeling approach using [63 6] transformation matrices.
This introduces the reader to the technique and the reasons

Fig. 1. In (a), the three-vee coupling has six constraints arranged in three
pairs. In (b), the tetrahedron-vee-flat coupling has six constraints arranged
in a 3–2-1 configuration.

Fig. 2. This plan view of a three-vee coupling was created by arbitrarily
placing three balls then orienting the vees to bisect the angles between
balls. Lines projected perpendicular to any two vees intersect at instanta-
neous centers (IC). It so happens that the vees oriented in this manner
always intersect the IC’s as shown.
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why it is preferred over a more direct approach such as that
used by Schmiechen [10]. The details required for imple-
mentation are postponed to the Appendix. Then four opti-
mization criteria are developed to satisfy a range of appli-
cations. These appear in a generally increasing order of
complexity, the next one extending an idea beyond the
previous ones: 1) Maxwell’s criterion, 2) maximizing the
modal frequency, 3) minimizing frictional nonrepeatability,
and 4) maximizing the limiting coefficient of friction. The
last criterion was introduced at the 1998 ASPE Conference
and later documented in full [13,14]. A fifth criterion more
specific for the design of touch-trigger probes will be the
subject of a future article. Finally the application that mo-
tivated this study, kinematic mounts for replaceable optics
assemblies in the National Ignition Facility (NIF), serves to
demonstrate a graphical approach to multi-variable optimi-
zation.

2. Modeling approach

It is sufficient, for the purposes of optimizing the con-
figuration or determining the approximate stiffness, to rep-
resent the kinematic coupling as a system of springs, typi-
cally as a parallel combination of six springs. The basic
assumption is that the equivalent spring for the combination
represents useful information, for example, the equivalent
stiffness matrix. If desired, this information is easily prop-
agated back to individual springs, for example, to obtain
local forces and moments. Additional springs may be in-
cluded to represent additional sources of compliance such as
added flexures and the coupling body. Usually each spring
is linear or is linearized about a nominal load so it can be
represented as a stiffness or compliance matrix, although the
complete nonlinear vector function may be retained if de-
sired.

The key formalism in this approach is the six-dimen-
sional vector used to succinctly represent three linear de-
grees of freedom and three angular degrees of freedom. This
formalism is common in the literature for robot manipula-
tors [15]. For example, the vector may be a force-moment
vector or a differential translation-rotation vector, which
describes the load or deflection, respectively, of a six-di-
mensional spring. The linear relationship between the load
and deflection is represented by the [63 6] stiffness matrix
or its inverse the compliance matrix. It is convenient to
express [63 6] matrices as blocks of [33 3] matrices as
demonstrated with the stiffness matrices in Eqs. (1) and (2).
In practice it is usually easier to construct the compliance
matrix in Eq. (3), then invert the whole matrix to obtain the
stiffness matrix. For example, each column of the compli-
ance matrix contains the translation-rotation vector obtained
by the independent application of the unit force or moment
component corresponding to that column.

f 5 Ffx
fy
fz
G 5 F kxx kxy kxz

kxy kyy kyz

kxz kyz kzz

G z Fddx

ddy

ddz

G 5 Kf/d z dd

(1)

F f
– –
m
G 5 FKf/d ¦ Kf/u

– – – – – – –
Km/d ¦ Km/u

G z Fdd
– –
du

G Km/d 5 Kf/u
T

(2)

F dd
– –
du

G 5 FCd/f ¦ Cd/m

– – – – – – –
Cu/f ¦ Cu/m

G z F f
– –
m
G Cu/f 5 Cd/m

T

(3)

Any spring has a principal coordinate system (CS) where
the off-diagonal terms of the stiffness or compliance matrix
are zero. In defining either matrix, it is most convenient to
use the principal CS or perhaps another CS where the spring
is largely symmetric. The Hertz contact problem is defined
in such a CS where the origin is at the center of the contact
and thez-axis is normal to the contacting surfaces. If the
contact is assumed to be friction free or in a state of sliding,
then only thekzz element is nonzero. If instead no slip
occurs at the contact, thenkxx andkyy will have up to 83%
the value ofkzz, depending on the lateral load and other
factors [7]. In either case, the [63 6] stiffness matrix will
become full, in general, when reflected to a different CS,
perhaps one at the center of the kinematic coupling. Once all
the stiffness matrices for the six contact surfaces are re-
flected to the same CS, then it is a simple matter to add them
together to get the stiffness matrix for the kinematic cou-
pling in that common CS. The [63 6] transformation
matrix makes the process of reflecting a stiffness or com-
pliance matrix to a different CS straightforward.

2.1. Transformation-matrix basics

The [3 3 3] rotation matrix and the [43 4] homoge-
neous transformation matrix (HTM) are well known tools
that many readers will find familiar. Since these are impor-
tant in understanding the lesser known [63 6] transforma-
tion matrix used here, brief descriptions are provided for
those that require review. The rotation matrix describes in
its three columns the angular orientation of thex-y-zaxes,
respectively, of a new CS with respect to the base CS.
Multiplying the rotation matrix by a three-dimensional vec-
tor expressed in the new CS transforms its representation to
the base CS as if they share a common origin.4 The rotation
matrix is orthonormal, thus placing six constraints on its
nine elements: three orthogonality conditions and three unit-
length conditions (the unit vectors of an orthogonal CS).
This leaves three independent parameters that are sufficient
to represent any given angular orientation, usually as a
series of three angular dimensions taken in a specific order.
The rotation matrix is basic to other more specialized trans-
formation matrices such as the HTM. Applicable only to
position vectors, the HTM contains the rotation matrix and
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accounts for a translation between CS’s, changing the rep-
resentation of a position in the new CS to the same position
in the base CS. Likewise, the [63 6] transformation matrix
accounts for both rotation and translation between two CS’s
but is applicable only to six-dimensional vectors such as
those described previously.5

A sequence of transformations through a chain of CS’s is
conveniently represented as a sequence of transformation
matrices multiplied together as shown in Eq. (4). The frac-
tional subscripts are useful to keep the proper order and
sense of the matrices. This sequence may be considered
from two different points of view. If each transformation is
described with respect to a body CS that changes through
the sequence, then the sequence progresses from left to right
in Eq. (4) from the base CS0 to the newest CSn. If instead
each transformation is described with respect to the base
CS0, then the sequence progresses from right to left in Eq.
(4). These two points of views have important practical
value when dealing with sequential transformations and
may be summarized with two simple rules [15]:

Rule 1: post multiply to transform in body coordinates
Rule 2: pre multiply to transform in base coordinates

v0 5 T0/1 z T1/2 · · ·Tn21/n z vn

5 T0/n z vn (4)

2.2. Equations of compatibility and equilibrium

The [63 6] transformation matrix is derived from compat-
ibility and equilibrium equations, which express the same geo-
metric relationship, compatibility as a consistent relationship
among displacements and equilibrium as a balance of forces. It
is instructive to work through the example in Fig. 3, which
shows one spring in what could be a parallel and/or series
combination with many other springs. One end of the spring is
grounded and the other is connected to a rigid link that extends

to the base CS0. Movement of the link at CS0 causes the spring
to deflect relative to CS1 as described by Eq. (5), the compat-
ibility equations. Forces and moments developed in the spring
at CS1 transfer to CS0 through the link as described by Eq. (6),
the equilibrium equations. Both the compatibility equations
and the equilibrium equations are readily expressed in terms of
six-dimensional vectors. In so doing, a single matrix, the trans-
formation matrix, satisfies both the compatibility equations in
Eq. (7) and the equilibrium equations in Eq. (8). The Appendix
shows the derivation and other details important for imple-
menting the transformation matrix in a computer program.

ddd1 5 R1/0 z ~ddd0 1 duu0 3 r0!

duu1 5 R1/0 z duu0 (5)

f0 5 R0/1 z f1

m0 5 R0/1 z m1 1 r0 3 ~R0/1 z f1! (6)

Fddd1

- - -
duu1

G 5 T0/1
T z Fddd0

- - -
duu0

G (7)

F f0

- - -
m0

G 5 T0/1 z F f1

- - -
m1

G (8)

2.3. Force-deflection relations for systems of springs

The concept of parallel and series combinations of com-
ponents is useful in a number of engineering disciplines. For
example, electrical resistor analogies are common in fluid
mechanics and heat transfer. In mechanics, the springs can
be multi-dimensional and aligned in different directions,
provided that the loads and deflections for all the springs are
represented in the same CS. Then the springs in parallel
experience the same deflection and their loads add, while
springs in series experience the same load and their deflec-
tions add. For linear or linearized springs, stiffness matrices
are added to represent parallel combinations and compli-
ance matrices are added to represent series combinations.
Mixed combinations of parallel and series springs require
like groups to be combined first then inverted as necessary
to combine with other groups.

The [6 3 6] transformation matrix handles the task of
converting force-moment and differential translation-rota-
tion vectors to the proper CS. The block diagram in Fig. 4
shows the required process flow for parallel springs (a) and
series springs (b) [16]. The subscripti indicates the spring
number, and there are as many loops in the diagram as there
are springs. Eq. (9) shows the equivalent stiffness matrixK0

for springs in parallel; the inverse is the equivalent compli-
ance matrix. Eq. (10) shows the equivalent compliance
matrix C0 for springs in series; the inverse is the equivalent
stiffness matrix. This technique applies equally well to
inertial and damping quantities expressed with six-dimen-

Fig. 3. The stiffness matrixK1 of the spring is expressed in terms of the
local CS1. The goal is to express the stiffness matrix in terms of the base
CS0. A collection of springs once represented in the same CS can be added
together in series or parallel combinations.
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sional vectors. When applied to an inertia matrix, for ex-
ample, it is a generalized form of the parallel axis theorem.

K0 5 O
i

T0/i z K i z T0/i
T (9)

C0 5 O
i

T0/i
2T z Ci z T0/i

21 (10)

It is useful to review the steps in the system modeling
problem before moving on to optimization. The analyst
must identify the number and combination of springs that
make up the system, typically six parallel springs for a
kinematic coupling. Then the analyst defines the stiffness or
compliance matrix (or function) for each spring in its own
CS. Although somewhat arbitrary, the analyst must choose
a convenient base CS with which to represent the system as
an equivalent spring. With all the CS’s chosen, the analyst
can determine the instruction set describing the position and
orientation of each spring CS to the base CS. Usually some
of the instructions become parameters in the optimization
study. Finally the analyst must assemble the equation for the
equivalent spring in the manner of Eqs. (9) and (10). Since
the model is completely parametric, both the configuration,
represented by the local CS’s, and the spring elements may
be optimized as the analyst sees fit.

3. Optimization criteria

The optimization criteria provide meaningful, quantita-
tive measures with which to evaluate and optimize the
kinematic coupling design. The optimization process in-
volves varying some subset of the coupling parameters in a
way that makes one or more of the optimization criteria
maximum or minimum as the case may be. From the user
perspective, the main decision is which one(s) to use, and
this will depend on the main requirements for the particular
application. The four criteria presented here should suffice
for most application and others could be created for special
purposes. In setting up the algorithms to compute the opti-
mization criteria, there is a decision regarding how to com-
bine typically six values computed for each constraint.
Since this aspect applies to all, it will be presented now in
advance of the individual criteria.

The generalized mean, defined in Eq. (11), gives the user
complete flexibility in emphasizing larger elements in the
combination over the smaller elements or vice versa by
adjusting the value of the exponentp. For example, using
p 5 2 is the familiar root mean square (RMS), which places
somewhat greater emphasis on larger elements. In the limit
asp 3 `, the generalized mean picks only the maximum
element and ignores the rest. A negative exponent changes
the elements to reciprocals, thus placing greater emphasis
on smaller elements. In between positive and negative asp
3 0, the generalized mean gives the same result as the
geometric mean. This indicates that the geometric mean is
neutral, placing no emphasis on large or small elements. In
practice, however, we typically use the maximum or mini-
mum element depending on the optimization criterion.

gen_mean(v, p) 5 H1

n
O

i 5 1

n

uvi u pJ1/p

(11)

3.1. Maxwell’s criterion

Although not closely tied to a physical measure, Max-
well’s criterion is simple to implement and it demonstrates
techniques used in more specialized optimization criteria. It
states that each constraint should be aligned to the local
direction of motion allowed by the five other constraints,
assuming that they remain engaged and are free to slide. To
test this criterion, each constraint is released individually to
discover the direction of motion at the released constraint
compared to the actual constraint direction. This test is
demonstrated in Fig. 5 on a symmetric three-vee coupling.
The inner product (or dot product) between the direction of
motion and the constraint direction provides a convenient
scalar indicator of the alignment. The vector directions are
given unit length so that perfect alignment produces a max-
imum inner product of one. There will be one inner product
for each constraint, and the objective is to maximize all six.
For this symmetric coupling, the inner product is the same

Fig. 4. The diagram shows the required process flow for parallel springs (a)
and series springs (b), after Strang [16].
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for each of the six constraints and equal to cos(90°–2a),
which is maximum ata 5 45°.

Computing the inner product for each constraint turns
out to be a rather simple process. The constraint direction is
always along thez-axis of the local CS by convention. Then
the inner product reduces to thez-component of a unit
vector along the direction of motion at the released con-
straint, also in the local CS. The equivalent stiffness matrix
computed with only five constraints will have a singular
direction with zero stiffness. This direction in the base CS0

is given by the eigenvector of the stiffness matrix corre-
sponding to the zero eigenvalue. MultiplyingT0/i

T by the
six-dimensional eigenvector transforms the eigenvector to
the local CSi. The translation part of this transformed sin-
gular direction is the direction of motion at the constraint,
but it may not be unit length. Dividing thez-component by
the length gives the inner product for that particular con-
straint. This procedure is repeated for each of the five
remaining constraints, and the minimum value is typically
used in the design optimization. Maxwell’s criterion, being

computed from the singular directions, is a function only of
the configuration of constraints, not their stiffness. Some of
the other optimization criteria will involve the constraint
stiffness.

3.2. Maximizing the modal frequency

The modal frequencies of a dynamic system are com-
puted from the mass and stiffness matrices using the gen-
eralized eigenvalue algorithm. This requires the continuous
system to be represented by a discrete number of degrees of
freedom, for example, as done in the finite element method
with interpolating functions. As a first approximation, the
coupling and payload are assumed to be rigid so that the
mass matrix will be six dimensional like the stiffness ma-
trix. The mass is recorded in the first three diagonal ele-
ments, the [33 3] inertia matrix is recorded in the lower
diagonal block, and the rest are zeros. The [33 3] inertia
matrix and the newly created [63 6] mass matrix both
apply about the mass centroid. Either the mass matrix or the
stiffness matrix must be reflected to the CS of the other
before applying the generalized eigenvalue algorithm. The
six eigenvalues that it computes are equal to the squares of
the modal frequencies in radians per second if the mass and
stiffness are in consistent units. The minimum value is
typically used in the design optimization, but the coupling
optimized just for frequency may not function well in other
respects such as sliding to a centered position. Once a
balanced optimum is found, finite element analysis can be
used to improve the accuracy of the modal frequencies.

Continuing the example of the symmetric three-vee cou-
pling, a mass element will be placed at the center of stiffness
and given principal moments of inertia equal tom Rm

2,

wherem is the mass andRm is the radius of gyration. Eq.
(12) gives the stiffness matrix, wherek is the stiffness of
each constraint andRk is the radius to each constraint. The
anglea is the parameter to optimize and is defined the same
as before (see Fig. 5). The modal frequencies, in this case,
are determined simply by dividing the diagonal elements of
K by those ofM with the results shown in Eq. (13).

K 5 diag1 3
3k sin2(a)
3k sin2(a)
6k cos2(a)

3kRk
2 cos2~a!

3kRk
2 cos2(a)

6kRk
2 sin2(a)

4 2 (12)

vv 5 S3k

mD
1
2 3

sin(a)
sin(a)

2 cos(a)
g cos(a)
g cos(a)
2g sin(a)

4 g 5
Rk

Rm
(13)

Only a few degrees of freedom matter in the optimization
depending on the radius ratiog. For example wheng is

Fig. 5. The three-vee coupling slides on five constraints producing rotation
about an instant center shown in the top view and also about an axis
through the two seated balls.
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small, the angular degrees of freedom will limit the modal
frequencies. This is one of three regimes to evaluate as
indicated in Eq. (14). The center regime finds the balance
betweenx-y linear andx-y angular degrees of freedom. The
last regime is governed by the linear degrees of freedom. It
is useful to check the consequence of using a suboptimal
angle, saya 5 45°, when one of the outer regimes is
optimal. In either case, the minimum modal frequency
would be reduced a factor 0.866 from the optimal condition.
This is not very significant although other applications
could be somewhat worse, for example, if the center of mass
lies distant from the center of stiffness.

a 5 Harctan~221/ 2! > 358 g , 221/ 2

arctan~g! 221/ 2 # g # 21/ 2

arctan~21/ 2! > 558 g . 21/ 2

(14)

3.3. Minimizing frictional nonrepeatability

Repeatable engagement is frequently a driving require-
ment for and motivation to use a kinematic coupling. Fric-
tion between the contacting surfaces acting on the compli-
ance of the coupling is a main contributor to nonrepeatable
behavior [5]. Eq. 15 provides a simple order-of-magnitude
estimate for nonrepeatability that came from earlier work
[13,14]. While the estimate provides the general trends for
the given parameters, it lacks any information about the
configuration.6 For example, the frictional force for any
particular direction of sliding is proportional to the applied
loadP, the coefficient of frictionm and the configuration of
constraints. The effective stiffness of a constraint, in the
manner of Maxwell, is affected by the angle of the con-
straint compared to the direction of sliding it constrains.
Thus both contributors to nonrepeatability (friction and
compliance) are affected by the configuration of constraints.
Furthermore, the magnitude of nonrepeatability is likely to
vary among the six sliding directions and directions in
between.

r ;
f

k
< mS 2

3RD
1/3SP

ED
2/3

(15)

To make this problem tractable, an assumption must be
made regarding the directions to check for nonrepeatability.
We will use the six singular directions found for Maxwell’s
criteria assuming that these well represent the nonrepeat-
ability for all other directions. This sample may not bound
the worse-case nonrepeatability, but the main purpose is to
represent the character of the coupling so it may be opti-
mized. The next section will provide logic that lends cre-
dence to this assumption.

This method begins as with Maxwell by finding the
singular direction of a five-constraint stiffness matrix.
Again the actual stiffness of each constraint is not important
for this step but it will become important subsequently. The
singular direction is used in computing the frictional force-

moment vector, which acts on the full compliance matrix
resulting in a translation-rotation vector of nonrepeatability.
This vector is given in the same CS as the compliance
matrix, which may not be the functional point of the cou-
pling, for example, a tool point. It is straightforward to
transform the nonrepeatability vector to another CS and
compute the vector magnitude, usually only the translation
part. This procedure is repeated for each of the five remain-
ing constraints, and the maximum value is typically used in
the design optimization.

Computing the frictional force-moment vector is a
new aspect in this method worth more detailed explana-
tion. The singular direction must first be transformed to
each local CS to obtain the direction of translation at each
constraint. The local friction force will lie in thex-y plane
and be equal in magnitude to the coefficient of friction
times the normal force at the constraint.7 A simplifying
step works under the assumption that the normal forces
remain at the values calculated for equilibrium without
friction. In effect, friction causes a nonrepeatability in the
load vector required to bring the coupling to the ideal
engagement point. This is the frictional force-moment
vector, which is computed by transforming the six local
friction forces to the base CS of the coupling and then
adding. Multiplying the compliance matrix by this vector
gives the nonrepeatability vector.

For the symmetric three-vee coupling in Fig. 5, the
dominant component of nonrepeatability at the center will
be horizontal. Neglecting the other components and assum-
ing the coupling is symmetrically loaded, Eq. (16) gives the
nonrepeatability as a function of configuration, represented
by a, and other termsm, P andk. The effect of the config-
uration is plotted in Fig. 6, which shows a minimum of 0.71
at a 5 58°. The estimate in Eq. (15), corresponding to a
factor 1 in the figure, is somewhat conservative for the
symmetric three-vee coupling having a nearly optimal vee
angle.

Fig. 6. The effect of the vee anglea on the repeatability of the symmetric
three-vee coupling has a minimum of 0.71 at 58°.
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r >
mP

18k sin2a cosa
~2Î3 1 cosa 1 sin2a! (16)

3.4. Maximizing the limiting coefficient of friction

The extreme case of a nonrepeatable coupling is one that
fails to slide to the centered position. It becomes centered
when all constraints are fully engaged although it may not
go to the ideal center where the potential energy is minimal.
The coupling will center if the real coefficient of friction is
less than the limiting value when the net centering force
goes to zero. The coupling optimized for centering will have
the maximum margin obtained by maximizing the limiting
coefficient of friction over the real coefficient of friction. In
practice, a margin of 3:1 is reasonable to obtain and quite
sufficient.

When a coupling is brought together initially off center,
the constraints engage sequentially as the coupling seeks a
path to center. This path becomes better defined as more
constraints engage. For example, five constraints allow the
coupling to slide along one well-defined path. Four con-
straints allow motion over a two-dimensional surface of
paths and so forth. As each new constraint engages, it
directs the coupling along a more resistive path to center. In
other words, the coupling looses the freedom to follow the
least resistive path. This means that a path with five con-
straints engaged will set the limiting coefficient of friction,
and there are only six such paths to analyze. These are the
six singular directions found for Maxwell’s criterion and the
ones used to sample the nonrepeatability of the coupling.
The method used to compute the frictional forces is essen-
tially the same as before except that the coefficient of
friction is now a variable to be solved from the equation for
the constraint not engaged, since its reaction force must be
zero for the coupling to be on the verge of sliding.8 This
procedure is repeated for each of the five remaining con-
straints, and the minimum value is typically used in the
design optimization.

When the symmetric three-vee coupling in Fig. 5 is
loaded with a nesting force, a centering force develops
tending to slide the coupling along the singular direction.
The off-center vee transforms its share of the nesting force
(assumed to be one-third in this example) into a centering
moment about the instant center. Eq. (17) describes the
centering force at the center of the coupling due to this
moment as a function of the anglea and the coefficient of
friction m. The limiting coefficient of friction corresponds to
the threshold of sliding when the net centering force or
moment is zero. In this example, the six sliding directions
are symmetrically identical and equally loaded so there is
only one equation to solve form as a function ofa. Re-
viewing the numerical results in Table 1, a 60° angle for the
three-vee coupling is very close to optimal. This result is
consistent with that found for minimum frictional nonre-

peatability, but it has slightly higher contact stress than the
result found for Maxwell’s criterion,a 5 45°.

fc
fn

5
sina 2 mcosa

2~cosa 1 msina!
2

Î3m

3cosa
(17)

Table 1 also gives the results for a new kinematic
coupling called the three-tooth coupling [17]. Shown in
Fig. 7, the three-tooth coupling forms three theoretical
lines of contact between cylindrical teeth on one member
and flat teeth on the other member.9 Each line constrains
one translation and one rotation to give a total of six
constraints; however, it is somewhat simpler to model
this as six translational constraints each centered on a
tooth face.

4. Kinematic mounts for NIF optics assemblies

The National Ignition Facility (NIF) when completed
in 2003 will be the world’s most powerful laser system
and the first facility capable of achieving nuclear fusion
and energy gain in a laboratory. Being able to create

Fig. 7. The three-tooth coupling forms three theoretical lines of contact
between cylindrical teeth on one member and flat teeth on the other
member.

Table 1
The limiting coefficient of friction for symmetric three-vee and three-
tooth couplings varies with the inclination angle of the contact surfaces.
The margin for centering is of order 3:1 using a typical coefficient of
friction of 0.10 to 0.12.

Angle of Inclinationa 45° 50° 55° 60° 65°
Three-Vee Coupling 0.317 0.338 0.354 0.364 0.365
Three-Tooth Coupling 0.319 0.339 0.351 0.352 0.339
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conditions more extreme than the center of the Sun, it
will have far-reaching implications for fusion energy and
a variety of scientific fields. The architecture for the NIF
laser system is heavily influenced by the need to routinely
replace damaged optics in a very clean and inert atmo-
sphere. A concept was adopted where any optics assem-
bly, known as a line replaceable unit or LRU, could be
installed or removed by a semi-automated transportation
canister from underneath the laser. The canister docks to
the laser structure, establishes a pressure-tight seal, re-
moves an access panel, and installs the LRU with a
straight-line lift. This concept for the NIF requires many
hundreds of large kinematic couplings to handle LRUs
with the transportation canister and to mount them within
the laser structures. The kinematic mount between the
LRU and laser structure, although based on three vees,
deviated from our experience sufficiently to motivate an
optimization using the limiting coefficient of friction.
Fig. 8 shows this design on a prototype LRU, which is

temporarily separated from the support structure to show
the kinematic mount.

The basic configuration of the kinematic mount is a
three-vee coupling with one widely spaced vee at the top
and two vees near the bottom. Fig. 9 shows the locations
and orientation of the six constraints in four different views.
Configuring the mounting points to lie in a vertical plane
gives the most favorable aspect ratio and accommodates the
dense packing of LRUs. Furthermore, finite element analy-
sis showed that the torsional mode of the frame would be a
limitation to vibrational stability, assuming zero friction in
the constraints. Placing the instant center of the upper vee
near the principal axis of the LRU reduces the inertia in the
torsional mode and increases the frequency. A more signif-
icant motivation for the wide vee is the frictional constraint
against rotation, which is an order of magnitude stiffer than
the LRU frame. The potential static twist in the frame due
to friction is much less than the requirement for initial
alignment.

Fig. 8. The prototype LRU in (a) is over 2.5 m tall, and when mounted in the NIF periscope structure, the lowest point will be 3.6 m to 5.5 m above the
floor, depending in its location in a staircase-like structure. The upper mount has two pin-slot constraints like the one shown in (b) partially engaged. The
Ø 35 mm pins attach to the structure. In (c), two vee blocks on the LRU engage two Ø 32 mm actuated pins on the structure to form the lower mount.
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Physically, the upper vee consists of two pin-slot con-
straints that passively engage as the LRU lifts into place.
As Fig. 10 shows, each constraint consists of a tapered
pin attached to the structure and a slotted receiver at the
top of the LRU. Conversely, the lower mount is active
and formed by two vee blocks on the LRU that can travel
past retracted pins on the structure. As Fig. 11 shows, the
pins extend to receive the vee blocks and support the
weight of the LRU, which ranges from 300 to 600 kgf
depending on LRU type. Each pin mechanism is actuated
by a pneumatic cylinder and for safety reasons is inca-
pable of retracting under the weight of the lightest LRU.
Due to the angle of the pin, the load is primarily com-
pressive across its 32 mm diameter.

4.1. A graphical approach to multi-variable optimization

A parameterized model of the NIF LRU was devel-
oped using the methods described in this paper. The
positions of the constraints were set largely by geometric
considerations, but the angles of the constraints were
controlled by four variable parameters to be optimized: 1)
the pin angle of the lower mount, 2) the outside vee angle
of the lower mount, 3) the inside vee angle of the lower
mount, and 4) the slot angle of the upper mount. At the
time, only the limiting coefficient of friction criterion had
been developed to optimize centering ability. Rather than
using an optimization algorithm, the criterion was plotted

in such a way that clearly shows the sensitivity to each
parameter and how to converge to the optimum within a
few iterations. This graphical approach leads to a better

Fig. 9. Orthographic and isometric views of one LRU. The arrows num-
bered 1–6 represent the six constraints that support the assembly. The
arrows are proportional to the reaction forces.

Fig. 10. The slotted receiver at the top of the LRU engages the tapered pin
on the structure with approximately 15 mm of radial capture range.

Fig. 11. The pneumatically actuated pin extends underneath the vee block
to support the LRU.
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understanding of the system and the tradeoffs between
parameters.

To begin the graphical optimization, the analyst chooses
a nominal value for each parameter and the range that it will
vary. Then for each variable parameter, the optimization
criterion is computed over the range while holding all other
parameters at their nominal values. This leads to a set of
curves showing how the optimization criterion varies with
each parameter about the nominal design. If the ranges are
quite different, the curves may be plotted versus a normal-
ized parameter range as is done in Fig. 12 to give a compact
horizontal axis. Fig. 12 shows two graphs for the NIF LRU
with slightly different nominal parameters as indicated
above each graph. The horizontal dashed line indicates the
limiting coefficient of friction for the nominal parameter set.
The optimal parameter set is apparent in (a) because a
change to any one parameter reduces the limiting coefficient

of friction. It is useful to observe the suboptimal parameter
set in (b). Curves that extend above the dashed line gener-
ally indicate that improvement is possible. The analyst
would adjust the nominal value toward the peak for one or
more curves, attempting to maximize the criterion in this
case. However, since changing just one parameter can
change the shape of several curves, it is usually best to make
partial steps toward the peaks, as an optimization algorithm
would.

5. Summary

Designers of kinematic coupling now have a set of quan-
titative measures with which to evaluate, compare or opti-
mize arbitrarily complex configurations of six constraints.
The first measure comes directly from the recommendation
of Maxwell, to align constraints to the directions that they
constrain. Think of this as efficiency. The second measure is
rather common today given the ease with which modal
frequencies are computed with finite element programs.
Modal frequency may be an important factor but probably
not the best choice to drive an optimization. The third and
fourth measures have clear physical meaning and usually
are driving requirements for kinematic couplings. Minimize
the frictional nonrepeatability when positioning repeatabil-
ity is critical. Maximize the limiting coefficient of friction
when reliable centering is critical. These measures are con-
veniently implemented in parametric models using six-di-
mensional springs and [63 6] transformation matrices. This
modeling approach is explained for completeness and be-
cause it is useful in other applications such as flexure sys-
tems. Space does not permit including a Mathcad™ pro-
gram developed for optimal kinematic coupling design but
interested readers may obtain hard or soft copies by con-
tacting the authors.

Notes

1. The instantaneous center of rotation (or instant cen-
ter for short) is a useful visual aid in understanding
the motion that combinations of constraints allow.
For example in Fig. 2, Vee 1 and 2 constrain four
degrees of freedom and allow rotation about two
axes. One axis passes through the center of each ball
and the other passes through the instant center per-
pendicular to the plane of the vees. When engaged,
Vee 3 constrains rotation about these two axes. See
page 115.

2. In addition, one reviewer of this paper described an
essentially identical graphical method by Wittgen, but
the authors were unable to locate this reference. See
page 115.

3. One reviewer of this paper pointed out that the
effective hinge axis of the flexure should coincide

Fig. 12. Limiting coefficient of friction versus a normalized range of model
parameters. Each curve corresponds to one individually varying parameter
while the others are held at nominal values. The horizontal dashed line
indicates the value for the nominal parameter set. The graph in (a) shows
the optimal configuration while (b) is suboptimal. In this example, the
markers occur in 5° increments of the angle parameters.
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with the effective center of curvature for the pair of
contacting surfaces. Otherwise there will be a sec-
ond-order error in repeatability of the coupling de-
pending on the degree of bending in the flexure. See
page 115.

4. Two CSs that do not have a common origin may or
may not require accounting for the offset depending
on the quantity being rotated. For example position
vectors require accounting for the offset while angular
velocity vectors do not. See page 116.

5. Paul [15] derives a method using HTMs to transform
differential translations and rotations from one CS to
another. He also shows that the resulting expressions
may be put in the form of a six-dimensional matrix
equation. Later he extends this result to forces and
moments using the principle of virtual work. He does
not, unfortunately, give the matrix a name. Although
technically a homogeneous transformation matrix, we
use [6 x 6] transformation matrix to avoid confusion
with the [4 x 4] HTM. See page 117.

6. The estimate is derived as if the couplings compliance
in all directions is equal to a single Hertzian contact
carrying a loadP and having a relative radiusR and
elastic modulusE. See page 120.

7. The constraint released to obtain the singular direc-
tion should have a frictional force reduced by the
ratio of x-y motion divided byx-y-z motion. This
ratio will be one for the other five constraints. See
page 120.

8. Since the eigenvalue algorithm may compute a sid-
ing direction that is into or out of engagement, the
computed coefficient of friction may be correspond-
ingly positive or negative. Using the absolute value
solves this problem. Nature selects the direction
into engagement yielding a positive coefficient of
friction, assuming the coupling is designed to be
stable. This condition is checked by seeing that all
six constraints are in compression at equilibrium.
See page 121.

9. The form of the teeth along the three lines of contact
must be straight to a small fraction of the calculated
Hertz deflection to achieve continuous contact and
fairly uniform stress. Other form tolerances may be
relatively loose and are driven primarily by the accu-
racy required of the coupling rather than its repeat-
ability. See page 121.
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Appendix

The [63 6] transformation matrix is constructed from
blocks of more elementary [33 3] matrices: the rotation
matrix, the cross product matrix, the identity matrix and
zeros. Understanding the rotation matrix is key to under-
standing the [63 6] transformation matrix so it is ad-
dressed first. Recall that the columns of the rotation
matrix express thex, y, zaxes, respectively, of the rotated
CS with respect to the base CS. The rotation matrix is
easiest to derive when the rotation occurs about any one
coordinate axis. Eqs. (18), (19), and (20) give, respec-
tively, the rotation matrices for separate rotations aboutx,
y andz axes. Being an orthogonal CS, the rotation matrix
is orthonormal by definition and the transpose operation
provides the inverse. In addition, these single-axis rota-
tion matrices are skew symmetric, so the inverse trans-
formation is simply the reverse rotation. Sequential ro-
tations are easy to compute by multiplying single-axis
rotation matrices in the proper order.

Rx~ux! 5 F 1 0 0
0 cosux 2sinux

0 sinux coxux

G (18)

Ry~uy! 5 F cosuy 0 sinuy

0 1 0
2sinuy 0 cosuy

G (19)

rz~uz! 5 F cosuz 2sinuz 0
sinuz cosuz 0

0 0 1
G (20)

Fig. 13. Any arbitrary orientation can be represented as a sequence of three
single-axis rotations such as this one about basex, y, and zaxes.
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A natural sequence of rotations and the one depicted in
Fig. 13 is rotation about the base axes in the orderx, y, z.
Remembering to pre multiply for base coordinates (Rule 2),
Eq. 21 shows that the proper order goes from right to left.
An entirely different interpretation is obtained by going left
to right (Rule 1):roll about thez body axis,pitch about the
y body axis, andyaw about thex body axis. In practice,
either point of view could turn out being easier to visualize
for a particular case.

Rxyz~uu) 5 Rz~uz! z Ry~uy! z Rx~ux! (21)

Euler chose a different set of three sequential rotations to
represent an arbitrary orientation. Fig. 14 shows the Euler
anglesf, u andc taken about the body coordinate axesz, y9
andz0 . Eq. (22) shows the proper order from left to right:
rotate about thez axis, rotate about they9 axis, and rotate
about thez99 axis. It differs from the roll-pitch-yaw repre-
sentation only in the last rotation.

REuler~f,u,c! 5 Rz~f! z Ry9~u ! z Rz0~c! (22)

A third way to describe an arbitrary orientation is with a
single angle rotation about a fixed axis. The vector direction
of the axis and the magnitude of the rotation can be ex-
pressed as an angle vector in the base CS. This transforma-
tion equivalently represents simultaneous rotations about
the basex, y and z axes. It may be constructed from a
sequence of rotations as follows. The first two rotations
establish a temporary CS that has itsz-axis aligned to the
angle vectoruu. Once the desired rotation is computed in the
temporary CS, it can be transformed back to the base CS as
Rtemp Rz(iuui) Rtemp

T. An algebraic expansion of this se-
quence eventually simplifies to a manageable result given in
Eq. (23).

Raxis~uu! 5 cos~iuui!F 1 0 0
0 1 0
0 0 1

G
1

sin~iuui!
iuui F 0 2uz uy

uz 0 2 ux

2uy ux 0
G

1
1 2 cos~iuui!

iuui2 Fux

uy

uz

G z @ux uy uz# (23)

The elementary matrix that accounts for the translation
between CS’s is the cross product matrix, which performs
the familiar vector cross product operation as a matrix-
vector multiplication. In the context of Mechanics, the cross
product relates through a lever arm either a force to a
moment or an infinitesimal rotation to an infinitesimal trans-
lation. A point to notice is that each process must go in the
direction stated; that is, the inverse process is ambiguous.
For example, there are infinitely many forces that can act on
the same lever arm to give the same moment. In addition,
the order that the vectors appear in the cross product is
important. Eq. (24) gives the order for forces and moments
and Eq. (25) gives the order for infinitesimal rotations and
translations. The non-invertible cross product matrix prop-
erly expresses the unidirectionality of the three-dimensional
transformation involving only the lever arm. When ex-
tended to six dimensions, the transformation becomes in-
vertible.

Fmx

my

mz

G 5 F rx

ry

rz

G 3 F fx
fy
fz
G

5 F 0 2rz ry

rz 0 2rx

2ry rx 0
G z F fx

fy
fz
G (24)

m 5 r 3 f 5 C(r) ? f

Fddx

ddy

ddz

G 5 Fdux

duy

duz

G 3 F rx

ry

rz

G
5 F 0 rz 2ry

2 rz 0 rx

ry 2rx 0
G z Fdux

duy

duz

G (25)

ddd 5 duu 3 r 5 (duT ? C(r) )T 5 C(r)T z duu

Eqs. (26) and (27) show, respectively, the previously
discussed equilibrium and compatibility relationships ex-
pressed as six-dimensional matrix equations. In this ex-
panded form, the equations show separately the cross
product matrix and the rotation matrix now extended to
six dimensions. Taking Eq. (26) as the defining form, the
right-hand matrix transforms the load vector to a rotated
CS parallel to CS0 but with the same origin as CS1. Then

Fig. 14. Euler angles describe an arbitrary orientation with sequential
rotationsf, u, c about bodyz, y9, z99 axes.
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the left-hand matrix completes the transformation by
accounting for the offsetr 0 from CS0 to CS1.

After multiplying the cross product matrix and the rota-
tion matrix, Eq. (28) shows two forms ofT0/1, the first
expressed in CS0 and the second in CS1. Eq. (29) gives the
inverse transformation obtained simply by reversing the
subscripts. The inverse is easy to prove by multiplying it by
the original to get the identity matrix. Notice that either
transformation matrix may be inverted simply by transpos-
ing the submatrices, although more frequently the first form
of Eq. (28) is numerically inverted.
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T0/15F R0/1 0
C(r0)zR0/1 R0/1

G5F R1/0
T 0

~C(r1) ? R1/0
T R1/0

T G (28)

T1/05F R1/0 0
C(r1)zR1/0 R1/0

G5F R0/1
T 0

~C(r0)zR0/1)
T R1/0

T G (29)

3 f0

– – –
m0 4 5 3

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

1 0 0
C~r0! 0 1 0

0 0 1

4 z 3
0 0 0

R0/1 0 0 0
0 0 0

0 0 0
0 0 0 R0/1

0 0 0

4 z 3 f1

– –
m14 (26)

3 ddd1

– – –
duu1 4 5 3

0 0 0
R0/1

T 0 0 0
0 0 0

0 0 0
0 0 0 R0/1

T

0 0 0

4 z 3
1 0 0
0 1 0 C~r0!T

0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

4 z F ddd0

– – –
duu0

G (27)
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