An Easy to Manufacture Non-Contact Precision Linear Motion System And Its Applications

by

Roger Shapley Cortesi

S.B., Mechanical Engineering
Massachusetts Institute of Technology, 1999

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN PARTIAL FULFILLMENT OF THE DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2000

© 2000 Massachusetts Institute of Technology
All rights reserved

Signature of Author .. Department of Mechanical Engineering
August 1, 2000

Certified by ... Professor Alexander Slocum
Thesis Supervisor

Accepted by ... Professor Ain A. Sonin
Chairman, Department Graduate Committee
An Easy to Manufacture Non-Contact Precision Linear Motion System And Its Applications

by

ROGER CORTESI

Submitted to the Department of Mechanical Engineering on August 1st, 2000 in Partial Fulfillment of the Requirements for the Degree of Master of Science at the Massachusetts Institute of Technology

ABSTRACT

The Axtrusion is a new linear motion element developed by Professor Alexander Slocum and Roger Cortesi of the Massachusetts Institute of Technology’s Mechanical Engineering Department. It is an easy to manufacture non-contact linear motion system. The prototype uses porous graphite air bearings and an open face permanent magnet linear motor to support and propel the carriage. Since there is no contact between the carriage and the way, the Axtrusion is ideal for high speed where reliability is at a premium. Initial testing of the prototype carriage indicates that it has the following performance specifications: a vertical load capacity of 2000 N (450 lbs); horizontal load capacity of 4000 N (900 lbs); a carriage pitch error of 12 micro-radians (2.5 arc seconds); a yaw error of 7.7 micro-radians (1.6 arc seconds); a vertical straightness at the center of the carriage of 0.3 microns (0.000012 inches); and a vertical stiffness of the carriage of 422 Newtons per micron (2,400,000 lbs/in).

Thesis Supervisor:
Prof. Alexander H. Slocum
Dept. of Mechanical Engineering
ACKNOWLEDGMENTS

I would like to thank my thesis advisor Professor Alex Slocum for all of his help and criticism. I would also like to thank Eli Razon of Anorad Corporation (www.anorad.com), Drew Devitt of Newway Bearings (www.newwaybearings.com), Phillip Greene of Dover Instruments (www.doverinstruments.com), and Claire "the measurement goddess" Johnson also of Dover Instrument for all of their help in making this project a success. A big thanks to the summer UROPS Sean Montgomery and Kelly Harper for all their help in machining the parts An finally to Jen Kelly for her proof reading help.
Chapter 1. Designing the Axtrusion

1.1 Axtrusion Components
1.2 How the Axtrusion Works
1.3 The Bench Level Prototype
1.4 Bearing Selection
1.4.1 Rolling Elements
1.4.2 Hydrostatic Bearings
1.4.3 Orifice Air Bearings
1.4.4 Porous Graphite Air Bearings
1.5 Way Surface Selection
1.5.1 Granite
1.5.2 Polymer Concrete
1.5.3 Metal
1.5.4 Aluminum Oxide
1.6 Motive Power Selection
1.6.1 Linear Motors
1.6.2 Ball Screw
1.6.3 Belt Drive
1.7 Sizing the Carriage (Load Capacity)
1.8 Sizing the Carriage (Roll and Normal Stiffness)
1.8.1 Stiffness of the Individual Bearing Pads
1.8.2 Stiffness Normal to the Direction of Travel
1.8.3 Rotational Stiffness
1.9 Casting the Carriage Base
1.10 Machining the Carriage Base
1.11 The Carriage Fixturing
1.12 Replicating the Bearing Pads to the Carriage Base
1.13 Assembly Lessons Learned
1.14 Modal Analysis Setup
1.15 Modal Analysis Results
A.3 Performance Data from the Prototype ... 123
 A.3.1 Carriage Pitch Data ... 123
 A.3.2 Carriage Yaw Data ... 127
 A.3.3 Linear Position Accuracy Data ... 131
 A.3.4 Straightness Data ... 133

A.4 The Stiffness Data ... 135
TABLE 1.1	Carriage Floating Modes	43
TABLE 1.2	Carriage Not Floating Modes	43
TABLE 1.3	Modal Equipment Conversion Factors	45
TABLE 2.1	Equivalent Young’s Modulus for Air Pad Models	73
TABLE A.1	Carriage Pitch Data Results	124
TABLE A.2	Carriage Yaw Data Results	128
TABLE A.3	Linear Position Accuracy Results	131
TABLE A.4	Vertical Carriage Displacements Under Load	135
TABLE A.5	Vertical Carriage Stiffness Data	136
NOMENCLATURE

\(A \) area \([m^2]\)
\(\hat{\mathbf{C}} \) carriage compliance matrix \((6 \times 6)\)
\(D_{\text{carriage}} \) the displacement and rotational vector \((1 \times 6)\) of the carriage
\(E \) Young’s modulus \([\text{Pa}]\)
\(\hat{\mathbf{e}} \) The displacement vector \((1 \times 4)\) of the point \(\hat{p} \)
\(f \) frequency \([\text{Hz}]\)
\(F \) force \([\text{N}]\)
\(F_m \) attractive force between the motor coil and magnet track \([\text{N}]\)
\(F_s \) force on each side bearing \([\text{N}]\)
\(F_{\text{top1}} \) force on each inboard top bearing \([\text{N}]\)
\(F_{\text{top2}} \) force on each inboard top bearing \([\text{N}]\)
\(g \) gravitational acceleration \([m/s^2]\)
\(h \) air gap between air bearing and way surface \([\text{m}]\) or \([\text{microns}]\)
\(\mathbf{HTM} \) The Homogenous Transformation Matrix \((4 \times 4)\)
\(K \) stiffness \([\text{N/m}]\)
\(K_{50 \times 100} \) stiffness of the 50 x 100 mm bearings \([\text{N/m}]\)
\(K_{75 \times 150} \) stiffness of the 75 x 150 mm bearings \([\text{N/m}]\)
\(L \) load \([\text{N}]\)
\(L_{50 \times 100} \) load on 50 x 100 mm bearing \([\text{N}]\)
\(L_{75 \times 150} \) load on 75 x 150 mm bearings\([\text{N}]\)
\(L_{b_{\text{max Side}}} \) the maximum load that can be supported by a side bearing \([\text{N}]\)
\(L_{b_{\text{max Top}}} \) the maximum load that can be supported by a top bearing \([\text{N}]\)
\(L_{c_{\text{max h}}} \) the maximum working load of the carriage in the horizontal direction \([\text{N}]\)
\(L_{c_{\text{max v}}} \) the maximum working load of the carriage in the vertical direction \([\text{N}]\)
\(L_{d_{\text{r}}} \) the distance between the left and right pairs of top bearings \([\text{mm}]\)
\(\hat{p} \) The vector \((1 \times 4)\) containing the coordinates of a point with respect to the carriage’s center of stiffness.
\(P_s \) supply pressure \([\text{Pa}]\)
\(\theta \) motor angle \([\text{degrees}]\)
\(w_m \) width of the motor track \([\text{mm}]\)
\(Y_1 \) location of the inboard pair of top bearings in the Y direction \([\text{mm}]\)
\(Y_2 \) location of the outboard pair of top bearings in the Y direction \([\text{mm}]\)
\(Y_m \) motor coil location in the Y axis \([\text{mm}]\)
\(Z \) the center of the side bearings in the Z direction \([\text{mm}]\)
\(Z_m \) motor coil location in the Z axis \([\text{mm}]\)